Showing 20 articles starting at article 381
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Space: Cosmology
Published Wearable sensor to monitor 'last line of defense' antibiotic



Researchers have combined earlier work on painless microneedles with nanoscale sensors to create a wearable sensor patch capable of continuously monitoring the levels of a ‘last line of defense’ antibiotic.
Published Bursts of star formation explain mysterious brightness at cosmic dawn



In the James Webb Space Telescope’s (JWST) first images of the universe’s earliest galaxies, the young galaxies appear too bright, too massive and too mature to have formed so soon after the Big Bang. Using new simulations, a team of astrophysicists now has discovered that these galaxies likely are not so massive after all. Although a galaxy’s brightness is typically determined by its mass, the new findings suggest that less massive galaxies can glow just as brightly from irregular, brilliant bursts of star formation.
Published Colliding neutron stars provide a new way to measure the expansion of the Universe



In recent years, astronomy has seen itself in a bit of crisis: Although we know that the Universe expands, and although we know approximately how fast, the two primary ways to measure this expansion do not agree. Now astrophysicists suggest a novel method which may help resolve this tension.
Published Researchers dynamically tune friction in graphene



The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers.
Published 3D-printed plasmonic plastic enables large-scale optical sensor production



Researchers have developed plasmonic plastic -- a type of composite material with unique optical properties that can be 3D-printed. This research has now resulted in 3D-printed optical hydrogen sensors that could play an important role in the transition to green energy and industry.
Published Strength is in this glass's DNA



Scientists were able to fabricate a pure form of glass and coat specialized pieces of DNA with it to create a material that was not only stronger than steel, but incredibly lightweight.
Published Down goes antimatter! Gravity's effect on matter's elusive twin is revealed


For the first time, in a unique laboratory experiment at CERN, researchers have observed individual atoms of antihydrogen fall under the effects of gravity. In confirming antimatter and regular matter are gravitationally attracted, the finding rules out gravitational repulsion as the reason why antimatter is largely missing from the observable universe.
Published Hidden supermassive black holes reveal their secrets through radio signals


Astronomers have found a striking link between the amount of dust surrounding a supermassive black hole and the strength of the radio emission produced in extremely bright galaxies.
Published Crystallization as the driving force


Scientists have successfully developed nanomaterials using a so-called bottom-up approach. They exploit the fact that crystals often grow in a specific direction during crystallization. These resulting nanostructures, which appear as 'worm-like and decorated rods,' could be used in various technological applications.
Published Nanofluidic device generates power with saltwater



There is a largely untapped energy source along the world's coastlines: the difference in salinity between seawater and freshwater. A new nanodevice can harness this difference to generate power.
Published Astronomers discover newborn galaxies with the James Webb Space Telescope


With the launch of the James Webb Space Telescope, astronomers are now able to peer so far back in time that we are approaching the epoch where we think that the first galaxies were created. Throughout most of the history of the Universe, galaxies seemingly tend to follow a tight relation between how many stars they have formed, and how many heavy elements they have formed. But for the first time we now see signs that this relation between the amount of stars and elements does not hold for the earliest galaxies. The reason is likely that these galaxies simply are in the process of being created, and have not yet had the time to create the heavy elements.
Published Astronomers find abundance of Milky Way-like Galaxies in early Universe, rewriting cosmic evolution theories


Galaxies from the early Universe are more like our own Milky Way than previously thought, flipping the entire narrative of how scientists think about structure formation in the Universe, according to new research.
Published Nanoparticles made from plant viruses could be farmers' new ally in pest control


Engineers have devised a new solution to control a major agricultural menace, root-damaging nematodes. Using plant viruses, the researchers created nanoparticles that can deliver pesticide molecules to previously inaccessible depths in the soil. This 'precision farming' approach could potentially minimize environmental toxicity and cut costs for farmers.
Published Scaling up the power of nanotechnology


Researchers created a proof of concept of a nanocapsule -- a microscopic container -- capable of delivering a specific 'payload' to a targeted location. While beyond the scope of this study, the discovery could one day impact how drugs, nutrients and other types of chemical compounds are delivered within humans or plants.
Published Shh! Quiet cables set to help reveal rare physics events


Newly developed ultra-low radiation cables reduce background noise for neutrino and dark matter detectors.
Published Making contact: Researchers wire up individual graphene nanoribbons


Researchers have developed a method of 'wiring up' graphene nanoribbons (GNRs), a class of one-dimensional materials that are of interest in the scaling of microelectronic devices. Using a direct-write scanning tunneling microscopy (STM) based process, the nanometer-scale metal contacts were fabricated on individual GNRs and could control the electronic character of the GNRs. The researchers say that this is the first demonstration of making metal contacts to specific GNRs with certainty and that those contacts induce device functionality needed for transistor function.
Published Stabilizing precipitate growth at grain boundaries in alloys


Materials are often considered to be one phase, but many engineering materials contain two or more phases, improving their properties and performance. These two-phase materials have inclusions, called precipitates, embedded in the microstructure. Alloys, a combination of two or more types of metals, are used in many applications, like turbines for jet engines and light-weight alloys for automotive applications, because they have very good mechanical properties due to those embedded precipitates. The average precipitate size, however, tends to increase over time-in a process called coarsening-which results in a degradation of performance for microstructures with nanoscale precipitates.
Published Tag team of the James Webb Space Telescope and ALMA captures the core of the most distant galaxy protocluster


An international research team has used the James Webb Space Telescope and the Atacama Large Millimeter/submillimeter Array to observe the most distant galaxy protocluster to date, 13.14 billion light-years away. The team has successfully captured the 'core region' of the galaxy protocluster, which corresponds to a metropolitan area with a particularly high number density of galaxies. The team has revealed that many galaxies are concentrated in a small area and that the growth of galaxies is accelerated. Furthermore, the team used simulations to predict the future of the metropolitan area and found that the region will merge into one larger galaxy within tens of millions of years. These results are expected to provide important clues regarding the birth and growth of galaxies.
Published Efficient next-generation solar panels on horizon following breakthrough


A scientific breakthrough brings mass production of the next generation of cheaper and lighter perovskite solar cells one step closer.
Published Chameleon-inspired coating could cool and warm buildings through the seasons


As summer turns to fall, many people will be turning off the air conditioning and firing up heaters instead. But traditional heating and cooling systems are energy intensive, and because they typically run on fossil fuels, they aren't sustainable. Now, by mimicking a desert-dwelling chameleon, a team has developed an energy-efficient, cost-effective coating. The material could keep buildings cool in the summers -- or warm in the winters -- without additional energy.