Biology: Biochemistry Biology: Cell Biology Biology: Microbiology Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Shrinking glaciers: Microscopic fungi enhance soil carbon storage in new landscapes created by shrinking Arctic glaciers      (via sciencedaily.com)     Original source 

Shrinking glaciers expose new land in the Arctic, creating unique ecosystems. Researchers studied how microbes colonize these barren landscapes. The study reveals a crucial role for specific fungal species in capturing and storing carbon in the newly formed soil. These findings suggest fungi are essential for future carbon storage in the Arctic as glaciers continue to recede.

Chemistry: Biochemistry Engineering: Nanotechnology Engineering: Robotics Research
Published

Nanorobot with hidden weapon kills cancer cells      (via sciencedaily.com)     Original source 

Researchers have developed nanorobots that kill cancer cells in mice. The robot's weapon is hidden in a nanostructure and is exposed only in the tumour microenvironment, sparing healthy cells.

Chemistry: Biochemistry Computer Science: Virtual Reality (VR) Energy: Technology Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

Soft, stretchy electrode simulates touch sensations using electrical signals      (via sciencedaily.com)     Original source 

A team of researchers has developed a soft, stretchy electronic device capable of simulating the feeling of pressure or vibration when worn on the skin. This device represents a step towards creating haptic technologies that can reproduce a more varied and realistic range of touch sensations for applications such as virtual reality, medical prosthetics and wearable technology.

Biology: Marine Ecology: Extinction Ecology: Nature Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Geoscience: Earth Science
Published

Ecologists reconstruct the history of biodiversity in the Indo-Australian archipelago and its rise as a hotspot      (via sciencedaily.com)     Original source 

The Coral Triangle, also known as the Indo-Australian Archipelago, is renowned for having the greatest marine biodiversity on our planet. Despite its importance, the detailed evolutionary history of this biodiversity hotspot has remained largely a mystery. An international research team has now shed light on this history, reconstructing how biodiversity in the region has developed over the past 40 million years.

Environmental: Biodiversity Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geography
Published

Drowning in waste: Pollution hotspots in aquatic environments      (via sciencedaily.com)     Original source 

A new study explores waste management systems and reveals that achieving zero waste leakage by 2030 is unlikely, potentially jeopardizing related Sustainable Development Goals. The authors emphasize the need for global cooperation, particularly across four regions, to responsibly manage waste disposal.

Biology: Marine Ecology: Nature Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Climate change to shift tropical rains northward      (via sciencedaily.com)     Original source 

Atmospheric scientists predict that unchecked carbon emissions will force tropical rains to shift northward in the coming decades, which would profoundly impact agriculture and economies near the Earth's equator. The northward rain shift would be spurred by carbon emissions that influence the formation of the intertropical convergence zones that are essentially atmospheric engines that drive about a third of the world's precipitation.

Engineering: Nanotechnology Engineering: Robotics Research
Published

The future of metals research with artificial intelligence      (via sciencedaily.com)     Original source 

A research team has developed an optimal artificial intelligence model to predict the yield strength of various metals, effectively addressing traditional cost and time limitations.

Engineering: Nanotechnology
Published

Materials research revolutionized by a small change      (via sciencedaily.com)     Original source 

Scientists develop the next generation of highly efficient memory materials with atom-level control.

Biology: Marine Ecology: Endangered Species Ecology: Extinction Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Projected loss of brown macroalgae and seagrasses with global environmental change      (via sciencedaily.com)     Original source 

Researchers predict that climate change will drive a substantial redistribution of brown seaweeds and seagrasses at the global scale. The projected changes are alarming due to the fundamental role seaweeds and seagrasses in coastal ecosystems and provide evidence of the pervasive impacts of climate change on marine life.

Biology: Evolutionary Biology: General Biology: Marine Biology: Microbiology Ecology: Animals Ecology: Extinction Ecology: Sea Life Environmental: Ecosystems
Published

To protect corals from summer heatwaves, we should help their microbial symbionts evolve heat tolerance in the lab      (via sciencedaily.com)     Original source 

Most coral reef restoration efforts involve restocking reefs with nursery-grown corals. However, if these corals are of the same stock as their wild counterparts, they will be equally vulnerable to the heat stress that caused the bleaching event in the first place. Researchers discuss the potential of improving corals' chances by inducing the evolution of heat tolerance in their symbionts -- the mutualistic microbes that provide corals with nutrients in exchange for shelter and that are expelled during coral bleaching.

Biology: Biochemistry Biology: General Ecology: General Ecology: Research Environmental: Ecosystems
Published

Wolves reintroduced to Isle Royale temporarily affect other carnivores, humans have influence as well      (via sciencedaily.com)     Original source 

In a rare opportunity to study carnivores before and after wolves were reintroduced to their ranges, researchers found that the effects of wolves on Isle Royale have been only temporary. And even in the least-visited national park, humans had a more significant impact on carnivores' lives.

Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

Microrobot-packed pill shows promise for treating inflammatory bowel disease in mice      (via sciencedaily.com)     Original source 

Engineers have developed a pill that releases microscopic robots, or microrobots, into the colon to treat inflammatory bowel disease (IBD). The experimental treatment, given orally, has shown success in mice. It significantly reduced IBD symptoms and promoted the healing of damaged colon tissue without causing toxic side effects.

Biology: Marine Ecology: Extinction Ecology: General Ecology: Research Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Geoscience: Earth Science
Published

Future risk of coral bleaching set to intensify globally      (via sciencedaily.com)     Original source 

Researchers have projected future marine heatwaves will cause coral reefs to be at severe risk of bleaching for longer periods than previously seen.

Biology: Marine Ecology: Extinction Ecology: Nature Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Paleontology: Climate
Published

Ocean's loss of oxygen caused massive Jurassic extinction: Could it happen again?      (via sciencedaily.com)     Original source 

Researchers have found a chemical clue in Italian limestone that explains a mass extinction of marine life in the Early Jurassic period, 183 million years ago. Volcanic activity pumped out CO2, warming oceans and lowering their oxygen levels. The findings may foretell the impact climate change and oxygen depletion might have on today's oceans.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

A new study highlights potential of ultrafast laser processing for next-gen devices      (via sciencedaily.com)     Original source 

A new study uncovers the remarkable potential of ultrafast lasers that could provide innovative solutions in 2D materials processing for many technology developers such as high-speed photodetectors, flexible electronics, biohybrids, and next-generation solar cells.

Chemistry: Thermodynamics Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Offbeat: Earth and Climate Offbeat: General
Published

Small, adsorbent 'fins' collect humidity rather than swim through water      (via sciencedaily.com)     Original source 

Clean, safe water is a limited resource and access to it depends on local bodies of water. But even dry regions have some water vapor in the air. To harvest small amounts of humidity, researchers developed a compact device with absorbent-coated fins that first trap moisture and then generate potable water when heated. They say the prototype could help meet growing demands for water, especially in arid locations.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Engineering: Nanotechnology
Published

Revealing the dynamic choreography inside multilayer vesicles      (via sciencedaily.com)     Original source 

Our cells and the machinery inside them are engaged in a constant dance. This dance involves some surprisingly complicated choreography within the lipid bilayers that comprise cell membranes and vesicles -- structures that transport waste or food within cells. In a recent paper, researchers shed some light on how these vesicles self-assemble, knowledge that could help scientists design bio-inspired vesicles for drug-delivery or inspire them to create life-like synthetic materials.