Computer Science: General Environmental: Wildfires Geoscience: Severe Weather Mathematics: Modeling
Published

Scientists use AI to predict a wildfire's next move      (via sciencedaily.com)     Original source 

Researchers have developed a new model that combines generative AI and satellite data to accurately forecast wildfire spread.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Shining light on amyloid architecture      (via sciencedaily.com)     Original source 

Researchers use microscopy to chart amyloid beta's underlying structure and yield insight into neurodegenerative disease.

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Engineering: Nanotechnology Physics: Optics
Published

New technique pinpoints nanoscale 'hot spots' in electronics to improve their longevity      (via sciencedaily.com)     Original source 

Researchers engineered a new technique to identify at the nanoscale level what components are overheating in electronics and causing their performance to fail.

Chemistry: Biochemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General
Published

Enzyme-powered 'snot bots' help deliver drugs in sticky situations      (via sciencedaily.com)     Original source 

Snot might not be the first place you'd expect nanobots to be swimming around. But this slimy secretion exists in more places than just your nose and piles of dirty tissues -- it also lines and helps protect the lungs, stomach, intestines and eyes. And now, researchers have demonstrated in mice that their tiny, enzyme-powered 'snot bots' can push through the defensive, sticky layer and potentially deliver drugs more efficiently.

Engineering: Nanotechnology
Published

Metamaterials for the data highway      (via sciencedaily.com)     Original source 

Researchers have been the first to demonstrate that not just individual bits, but entire bit sequences can be stored in cylindrical domains: tiny, cylindrical areas measuring just around 100 nanometers. As the team reports, these findings could pave the way for novel types of data storage and sensors, including even magnetic variants of neural networks.

Chemistry: General Engineering: Nanotechnology
Published

Biodegradable electronics may advance with ability to control dissolve rate      (via sciencedaily.com)     Original source 

Biodegradable electronics allow for medical devices -- such as drug delivery systems, pacemakers or neural implants -- to safely degrade into materials that are absorbed by the body after they are no longer needed. But if the water-soluble devices degrade too quickly, they cannot accomplish their purpose. Now, researchers have developed the ability to control the dissolve rate of these biodegradable electronics by experimenting with dissolvable elements, like inorganic fillers and polymers, that encapsulate the device.

Ecology: Nature Ecology: Trees Environmental: Ecosystems Environmental: General Environmental: Wildfires
Published

Wildfire smoke has a silver lining: It can help protect vulnerable tree seedlings      (via sciencedaily.com)     Original source 

Forest scientists studying tree regeneration have found that wildfire smoke comes with an unexpected benefit: It has a cooling capacity that can make life easier for vulnerable seedlings.

Environmental: General Environmental: Wildfires Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Complex impact of large wildfires on ozone layer dynamics      (via sciencedaily.com)     Original source 

In a revelation highlighting the fragile balance of our planet's atmosphere, scientists have uncovered an unexpected link between massive wildfire events and the chemistry of the ozone layer. Using satellite data and numerical modeling, the team discovered that an enormous smoke-charged vortex nearly doubles the southern hemispheric aerosol burden in the middle stratosphere of the Earth and reorders ozone depletion at different heights. This study reveals how wildfires, such as the catastrophic 2019/20 Australian bushfires, impact the stratosphere in previously unseen ways.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Microbeads with adaptable fluorescent colors from visible light to near-infrared      (via sciencedaily.com)     Original source 

Researchers have successfully developed an environmentally friendly, microspherical fluorescent material primarily made from citric acid. These microbeads emit various colors of light depending on the illuminating light and the size of the beads, which suggests a wide range of applications. Furthermore, the use of plant-derived materials allows for low-cost and energy-efficient synthesis.

Ecology: Nature Environmental: Ecosystems Environmental: General Environmental: Wildfires Geoscience: Environmental Issues
Published

Forest carbon storage has declined across much of the Western U.S., likely due to drought and fire      (via sciencedaily.com)     Original source 

Forests have been embraced as a natural climate solution, due to their ability to soak up carbon dioxide from the atmosphere as they grow, locking it up in their trunks, branches, leaves, and roots. But a new study confirms widespread doubts about the potential for most forests in the Western US to help curb climate change. The paper analyzed trends in carbon storage across the American West from 2005 to 2019.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: Optics
Published

High-speed electron camera uncovers a new 'light-twisting' behavior in an ultrathin material      (via sciencedaily.com)     Original source 

Using an instrument for ultrafast electron diffraction (MeV-UED), researchers discovered how an ultrathin material can circularly polarize light. This discovery sets up a promising approach to manipulate light for applications in optoelectronic devices.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Moving from the visible to the infrared: Developing high quality nanocrystals      (via sciencedaily.com)     Original source 

Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Progress in development of a new high-tech kidney disease urine test      (via sciencedaily.com)     Original source 

Development of a new way to accurately measure human serum albumin (HSA) levels in people with chronic kidney disease has progressed in recent testing.

Computer Science: General Engineering: Nanotechnology Physics: General
Published

Detecting defects in tomorrow's technology      (via sciencedaily.com)     Original source 

New research offers an enhanced understanding of common defects in transition-metal dichalcogenides (TMDs) -- a potential replacement for silicon in computer chips -- and lays the foundation for etching smaller features.

Engineering: Nanotechnology
Published

Researchers fabricate ultrastrong aluminum alloys for additive manufacturing      (via sciencedaily.com)     Original source 

Material engineers have created a patent-pending process to develop ultrahigh-strength aluminum alloys that are suitable for additive manufacturing because of their plastic deformability. They have produced the alloys by using several transition metals that traditionally have been largely avoided in the manufacture of aluminum alloys.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A 2D device for quantum cooling      (via sciencedaily.com)     Original source 

Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Single atoms show their true color      (via sciencedaily.com)     Original source 

A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A genetic algorithm for phononic crystals      (via sciencedaily.com)     Original source 

Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.

Chemistry: Biochemistry Engineering: Nanotechnology Engineering: Robotics Research
Published

Nanorobot with hidden weapon kills cancer cells      (via sciencedaily.com)     Original source 

Researchers have developed nanorobots that kill cancer cells in mice. The robot's weapon is hidden in a nanostructure and is exposed only in the tumour microenvironment, sparing healthy cells.