Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Direct view of tantalum oxidation that impedes qubit coherence      (via sciencedaily.com)     Original source 

Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.

Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Severe Weather
Published

In a warming world, climate scientists consider category 6 hurricanes      (via sciencedaily.com)     Original source 

For more than 50 years, the National Hurricane Center has used the Saffir-Simpson Windscale to communicate the risk of property damage; it labels a hurricane on a scale from Category 1 (wind speeds between 74 -- 95 mph) to Category 5 (wind speeds of 158 mph or greater). But as increasing ocean temperatures contribute to ever more intense and destructive hurricanes, climate scientists wondered whether the open-ended Category 5 is sufficient to communicate the risk of hurricane damage in a warming climate.

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Biometric Engineering: Nanotechnology Physics: General Physics: Optics
Published

A sleeker facial recognition technology tested on Michelangelo's David      (via sciencedaily.com)     Original source 

Many people are familiar with facial recognition systems that unlock smartphones and game systems or allow access to our bank accounts online. But the current technology can require boxy projectors and lenses. Now, researchers report on a sleeker 3D surface imaging system with flatter, simplified optics. In proof-of-concept demonstrations, the new system recognized the face of Michelangelo's David just as well as an existing smartphone system.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Unveiling Oxidation-induced Super-elasticity in Metallic Glass Nanotubes      (via sciencedaily.com)     Original source 

Oxidation can degrade the properties and functionality of metals. However, a research team recently found that severely oxidized metallic glass nanotubes can attain an ultrahigh recoverable elastic strain, outperforming most conventional super-elastic metals. They also discovered the physical mechanisms underpinning this super-elasticity. Their discovery implies that oxidation in low-dimension metallic glass can result in unique properties for applications in sensors, medical devices and other nanodevices.

Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Edge-to-edge assembly technique for 2D nanosheets      (via sciencedaily.com)     Original source 

A research team develops edge-to-edge assembly technique for 2D nanosheets.

Chemistry: General Engineering: Nanotechnology Physics: General Physics: Quantum Physics
Published

Single proton illuminates perovskite nanocrystals-based transmissive thin scintillators      (via sciencedaily.com)     Original source 

Researchers have developed a transmissive thin scintillator using perovskite nanocrystals, designed for real-time tracking and counting of single protons. The exceptional sensitivity is attributed to biexcitonic radiative emission generated through proton-induced upconversion and impact ionization.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

Key dynamics of 2D nanomaterials: View to larger-scale production      (via sciencedaily.com)     Original source 

A team of researchers mapped out how flecks of 2D materials move in liquid -- knowledge that could help scientists assemble macroscopic-scale materials with the same useful properties as their 2D counterparts.

Environmental: General Geoscience: Environmental Issues Geoscience: Severe Weather
Published

Death toll shows extreme air pollution events a growing urban threat      (via sciencedaily.com)     Original source 

New research has estimated that 1454 avoidable deaths (one person every five days) occurred in Australian capital cities in the past 20 years because of fine particle air pollution from extreme events such as bushfires and dust storms, wood-heater smoke or industrial accidents.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

Machine learning guides carbon nanotechnology      (via sciencedaily.com)     Original source 

Carbon nanostructures could become easier to design and synthesize thanks to a machine learning method that predicts how they grow on metal surfaces. The new approach will make it easier to exploit the unique chemical versatility of carbon nanotechnology.

Biology: Biochemistry Biology: General Biology: Microbiology Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather
Published

Fungal-rich soil may improve green roofs      (via sciencedaily.com)     Original source 

Green roofs have become increasingly popular thanks to their benefits related to climate adaptation, mitigation, and urban biodiversity management. But, in the U.S., green roofs are typically planted with non-native plants in sterile soils, and their effectiveness declines over time. A new study finds that managing green roof soil microbes boosts healthy urban soil development, which is a methodology that could be applied to support climate resilience in cities.

Engineering: Nanotechnology Physics: Optics
Published

New breakthroughs for unlocking the potential of plasmonics      (via sciencedaily.com)     Original source 

Plasmonics are unique light-matter interactions in the nanoscale regime. Now, a team of researchers has highlighted advances in shadow growth techniques for plasmonic materials, which have the potential to give rise to nanoparticles with diverse shapes and properties. They also introduce a method for large-scale production of nano-rotamers of magnesium with programmable polarization behavior, opening avenues for novel research applications.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing
Published

Small yet mighty: Showcasing precision nanocluster formation with molecular traps      (via sciencedaily.com)     Original source 

Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.

Engineering: Nanotechnology Physics: Optics
Published

Structural color ink: Printable, non-iridescent and lightweight      (via sciencedaily.com)     Original source 

A new way of creating color uses the scattering of light of specific wavelengths around tiny, almost perfectly round silicon crystals. This development enables non-fading structural colors that do not depend on the viewing angle and can be printed. The material has a low environmental and biological impact and can be applied extremely thinly, promising significant weight improvements over conventional paints.

Environmental: Water Geoscience: Geochemistry Geoscience: Severe Weather
Published

Compounding risks of atmospheric river storms      (via sciencedaily.com)     Original source 

When storms hit back-to-back, the flooding -- and economic damages -- are even worse than expected.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

High-efficiency carbon dioxide electroreduction system reduces our carbon footprint and progressing carbon neutrality goals      (via sciencedaily.com)     Original source 

Global warming continues to pose a threat to human society and the ecological systems, and carbon dioxide accounts for the largest proportion of the greenhouse gases that dominate climate warming. To combat climate change and move towards the goal of carbon neutrality, researchers have developed a durable, highly selective and energy-efficient carbon dioxide (CO2) electroreduction system that can convert CO2 into ethylene for industrial purposes to provide an effective solution for reducing CO2 emissions.

Biology: Biochemistry Biology: Cell Biology Chemistry: Biochemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Locusts' sense of smell boosted with custom-made nanoparticles      (via sciencedaily.com)     Original source 

Scientists have harnessed the power of specially made nanostructures to enhance the neural response in a locust's brain to specific odors and to improve their identification of those odors.

Engineering: Nanotechnology Physics: Optics
Published

Turning glass into a 'transparent' light-energy harvester      (via sciencedaily.com)     Original source 

Physicists propose a novel way to create photoconductive circuits, where the circuit is directly patterned onto a glass surface with femtosecond laser light. The new technology may one day be useful for harvesting energy, while remaining transparent to light and using a single material.

Chemistry: Biochemistry Energy: Technology Environmental: General Geoscience: Oceanography Geoscience: Severe Weather
Published

Self-powered movable seawall for tsunami protection and emergency power generation      (via sciencedaily.com)     Original source 

A movable seawall system, capable of generating sufficient electricity to raise gates and protect ports against tsunamis, has been proposed by researchers. The system has been found feasible in areas prone to Nankai Trough earthquake tsunamis. Additionally, it can generate surplus energy to supply emergency power to ports during power outages that commonly occur in natural disasters. This innovative system integrates disaster prevention with the use of renewable energy.