Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Geoscience: Landslides
Published Nothing is everything: How hidden emptiness can define the usefulness of filtration materials



Voids, or empty spaces, exist within matter at all scales, from the astronomical to the microscopic. In a new study, researchers used high-powered microscopy and mathematical theory to unveil nanoscale voids in three dimensions. This advancement is poised to improve the performance of many materials used in the home and in the chemical, energy and medical industries -- particularly in the area of filtration.
Published Waterproof 'e-glove' could help scuba divers communicate



When scuba divers need to say 'I'm okay' or 'Shark!' to their dive partners, they use hand signals to communicate visually. But sometimes these movements are difficult to see. Now, researchers have constructed a waterproof 'e-glove' that wirelessly transmits hand gestures made underwater to a computer that translates them into messages. The new technology could someday help divers communicate better with each other and with boat crews on the surface.
Published Researchers discover 'neutronic molecules'



Researchers have discovered 'neutronic' molecules, in which neutrons can be made to cling to quantum dots, held just by the strong force. The finding may lead to new tools for probing material properties at the quantum level and exploring new kinds of quantum information processing devices.
Published Researchers discover dual topological phases in an intrinsic monolayer crystal



An international team working with single-atom thick crystals found TaIrTe4's transition between the two distinct topological states of insulation and conduction. The material exhibited zero electrical conductivity within its interior, while its boundaries remain conductive. The team's investigation determined that the two topological states stem from disparate origins. The novel properties can serve as a promising platform for exploring exotic quantum phases and electromagnetism.
Published Can metalens be commercialized at a fraction of the cost?



Researchers suggests a groundbreaking strategy to expedite the commercialization of metalens technology.
Published Land under water: What causes extreme flooding?



If rivers overflow their banks, the consequences can be devastating -- just like the catastrophic floods in North Rhine-Westphalia and Rhineland-Palatinate of 2021 showed. In order to limit flood damage and optimize flood risk assessment, we need to better understand what factors can lead to extreme forms of flooding and to what extent. Using methods of explainable machine learning, researchers have shown that floods are more extreme when several factors are involved in their development.
Published A tiny spot leads to a large advancement in nano-processing, researchers reveal



Focusing a tailored laser beam through transparent glass can create a tiny spot inside the material. Researchers have reported on a way to use this small spot to improve laser material processing, boosting processing resolution.
Published Researchers create biocompatible nanoparticles to enhance systemic delivery of cancer immunotherapy



Researchers are enhancing immunotherapy effects against malignant tumors by developing and validating patent-ending poly (lactic-co-glycolic acid), or PLGA, nanoparticles modified with adenosine triphosphate, or ATP.
Published New method to measure entropy production on the nanoscale



Entropy, the amount of molecular disorder, is produced in several systems but cannot be measured directly. A new equation sheds new light on how entropy is produced on a very short time scale in laser excited materials.
Published Silicon spikes take out 96% of virus particles



An international research team has designed and manufactured a virus-killing surface that could help control disease spread in hospitals, labs and other high-risk environments.
Published Micro-Lisa! Making a mark with novel nano-scale laser writing



High-power lasers are often used to modify polymer surfaces to make high-tech biomedical products, electronics and data storage components. Now researchers have discovered a light-responsive, inexpensive sulfur-derived polymer is receptive to low power, visible light lasers -- promising a more affordable and safer production method in nanotech, chemical science and patterning surfaces in biological applications.
Published Research lights up process for turning CO2 into sustainable fuel



Researchers have successfully transformed CO2 into methanol by shining sunlight on single atoms of copper deposited on a light-activated material, a discovery that paves the way for creating new green fuels.
Published A self-cleaning wall paint



Beautiful white wall paint does not stay beautiful and white forever. Often, various substances from the air accumulate on its surface. This can be a desired effect because it makes the air cleaner for a while -- but over time, the color changes and needs to be renewed. Now, special titanium oxide nanoparticles have been developed that can be added to ordinary, commercially available wall paint to establish self-cleaning power: The nanoparticles are photocatalytically active, they can use sunlight not only to bind substances from the air, but also to decompose them afterwards.
Published Quantum interference could lead to smaller, faster, and more energy-efficient transistors



Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.
Published In-situ observation of nanoscale heat propagation



A research team has developed a technique that enables the nanoscale observation of heat propagation paths and behavior within material specimens. This was achieved using a scanning transmission electron microscope (STEM) capable of emitting a pulsed electron beam and a nanosized thermocouple -- a high-precision temperature measurement device.
Published Robotic metamaterial: An endless domino effect



If it walks like a particle, and talks like a particle... it may still not be a particle. A topological soliton is a special type of wave or dislocation which behaves like a particle: it can move around but cannot spread out and disappear like you would expect from, say, a ripple on the surface of a pond. Researchers now demonstrate the atypical behavior of topological solitons in a robotic metamaterial, something which in the future may be used to control how robots move, sense their surroundings and communicate.
Published Metamaterials and AI converge, igniting innovative breakthroughs



Scientists unveil next-generation research trends in metaphotonics platforms with AI.
Published Toxic metal particles can be present in cannabis vapes even before the first use, study finds



Though vapes have been heralded as a 'safer' way to consume either nicotine or cannabis, they present their own suite of risks that are being revealed through increasing regulation. Now, scientists have discovered that nano-sized toxic metal particles can be present in cannabis vaping liquids even before any heating occurs, and the effect is worse in illicit products.
Published Sustainable solution for wastewater polluted by dyes used in many industries



Water pollution from dyes used in textile, food, cosmetic and other manufacturing is a major ecological concern with industry and scientists seeking biocompatible and more sustainable alternatives to protect the environment. A new study has discovered a novel way to degrade and potentially remove toxic organic chemicals including azo dyes from wastewater, using a chemical photocatalysis process powered by ultraviolet light.
Published Bendable energy storage materials by cool science



Imaging being able to wear clothes that charge your gadgets just by wearing them. New research has brought us a step closer to achieving this reality.