Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Geoscience: Landslides
Published Exploring the effect of ring closing on fluorescence of supramolecular polymers



The properties of supramolecular polymers are dictated by the self-assembled state of the molecules. However, not much is known about the impact of morphologies on the properties of nano- and mesoscopic-scale polymeric assemblies. Recently, a research team demonstrated how terminus-free toroids and random coils derived from the same luminescent molecule show different photophysical properties. The team also presented a novel method for purifying the toroidal structure.
Published Scientists study the behaviors of chiral skyrmions in chiral flower-like obstacles



Chiral skyrmions are a special type of spin textures in magnetic materials with asymmetric exchange interactions. They can be treated as quasi-particles and carry integer topological charges. Scientists have recently studied the random walk-behaviors of chiral skyrmions by simulating their dynamics within a ferromagnetic layer surrounded by chiral flower-like obstacles. The simulations reveal that the system behaves like a topological sorting device, indicating its use in information processing and computing devices.
Published Can hydrogels help mend a broken heart?



You can mend a broken heart this valentine s day now that researchers invented a new hydrogel that can be used to heal damaged heart tissue and improve cancer treatments.
Published EVs that go 1,000 km on a single charge: Gel makes it possible



Engineers apply electron beam technology to develop an integrated silicon-gel electrolyte system.
Published New approach for fast and cost-effective pathogen detection



The ability to detect diseases at an early stage or even predict their onset would be of tremendous benefit to doctors and patients alike. A research team now develops intelligent, miniaturized biosensor devices and systems using nanomaterials to determine biomolecules and cells as well as biochemical reactions or processes as disease markers. The team's current publication describes the development of a portable, palm-sized test system that can simultaneously carry out up to thirty-two analyses of one sample.
Published Researchers reveal elusive bottleneck holding back global effort to convert carbon dioxide waste into usable products



Think of it as recycling on the nanoscale: a tantalizing electrochemical process that can harvest carbon before it becomes air pollution and restructure it into the components of everyday products. The drive to capture airborne carbon dioxide from industrial waste and make it into fuel and plastics is gaining momentum after a team of researchers uncovered precisely how the process works and where it bogs down.
Published Structural isomerization of individual molecules using a scanning tunneling microscope probe



An international research team has succeeded in controlling the chirality of individual molecules through structural isomerization. The team also succeeded in synthesizing highly reactive diradicals with two unpaired electrons. These achievements were made using a scanning tunneling microscope probe at low temperatures.
Published Unveiling the generation principles of charged particles 'trion' in 2D semiconductor



Researchers pioneer dynamic manipulation and the generation principles of trion at the nanoscale using tip-enhanced cavity-spectroscopy.
Published Ultra-sensitive lead detector could significantly improve water quality monitoring



Engineers have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous technologies.
Published Direct view of tantalum oxidation that impedes qubit coherence



Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.
Published A sleeker facial recognition technology tested on Michelangelo's David



Many people are familiar with facial recognition systems that unlock smartphones and game systems or allow access to our bank accounts online. But the current technology can require boxy projectors and lenses. Now, researchers report on a sleeker 3D surface imaging system with flatter, simplified optics. In proof-of-concept demonstrations, the new system recognized the face of Michelangelo's David just as well as an existing smartphone system.
Published Unveiling Oxidation-induced Super-elasticity in Metallic Glass Nanotubes



Oxidation can degrade the properties and functionality of metals. However, a research team recently found that severely oxidized metallic glass nanotubes can attain an ultrahigh recoverable elastic strain, outperforming most conventional super-elastic metals. They also discovered the physical mechanisms underpinning this super-elasticity. Their discovery implies that oxidation in low-dimension metallic glass can result in unique properties for applications in sensors, medical devices and other nanodevices.
Published Edge-to-edge assembly technique for 2D nanosheets



A research team develops edge-to-edge assembly technique for 2D nanosheets.
Published Single proton illuminates perovskite nanocrystals-based transmissive thin scintillators



Researchers have developed a transmissive thin scintillator using perovskite nanocrystals, designed for real-time tracking and counting of single protons. The exceptional sensitivity is attributed to biexcitonic radiative emission generated through proton-induced upconversion and impact ionization.
Published Key dynamics of 2D nanomaterials: View to larger-scale production



A team of researchers mapped out how flecks of 2D materials move in liquid -- knowledge that could help scientists assemble macroscopic-scale materials with the same useful properties as their 2D counterparts.
Published Machine learning guides carbon nanotechnology



Carbon nanostructures could become easier to design and synthesize thanks to a machine learning method that predicts how they grow on metal surfaces. The new approach will make it easier to exploit the unique chemical versatility of carbon nanotechnology.
Published New breakthroughs for unlocking the potential of plasmonics



Plasmonics are unique light-matter interactions in the nanoscale regime. Now, a team of researchers has highlighted advances in shadow growth techniques for plasmonic materials, which have the potential to give rise to nanoparticles with diverse shapes and properties. They also introduce a method for large-scale production of nano-rotamers of magnesium with programmable polarization behavior, opening avenues for novel research applications.
Published Small yet mighty: Showcasing precision nanocluster formation with molecular traps



Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.
Published Structural color ink: Printable, non-iridescent and lightweight



A new way of creating color uses the scattering of light of specific wavelengths around tiny, almost perfectly round silicon crystals. This development enables non-fading structural colors that do not depend on the viewing angle and can be printed. The material has a low environmental and biological impact and can be applied extremely thinly, promising significant weight improvements over conventional paints.
Published High-efficiency carbon dioxide electroreduction system reduces our carbon footprint and progressing carbon neutrality goals



Global warming continues to pose a threat to human society and the ecological systems, and carbon dioxide accounts for the largest proportion of the greenhouse gases that dominate climate warming. To combat climate change and move towards the goal of carbon neutrality, researchers have developed a durable, highly selective and energy-efficient carbon dioxide (CO2) electroreduction system that can convert CO2 into ethylene for industrial purposes to provide an effective solution for reducing CO2 emissions.