Showing 20 articles starting at article 681
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Geoscience: Geography
Published Scientists name the most common tropical tree species



Researchers have found almost identical patterns of tree diversity across the world's tropical forests. The study of over one million trees across 1,568 locations found that just 2.2% of tree species make up 50% of the total number of trees in tropical forests across Africa, the Amazon, and Southeast Asia. Each continent consists of the same proportion of a few common species and many rare species.
Published Acidity of Antarctic waters could double by century's end, threatening biodiversity



Without drastically reducing global emissions, the Antarctic Ocean could become too acidic for hundreds of species living there, many already endangered by rising temperatures and sea ice loss.
Published How black silicon, a prized material used in solar cells, gets its dark, rough edge



Researchers have developed a new theoretical model explaining one way to make black silicon. The new etching model precisely explains how fluorine gas breaks certain bonds in the silicon more often than others, depending on the orientation of the bond at the surface. Black silicon is an important material used in solar cells, light sensors, antibacterial surfaces and many other applications.
Published The first domino falls for redox reactions



Transmitting an effect known as a domino reaction using redox chemistry has been achieved for the first time.
Published Green ammonia could decarbonize 60% of global shipping when offered at just 10 regional fuel ports



A study has found that green ammonia could be used to fulfill the fuel demands of over 60% of global shipping by targeting just the top 10 regional fuel ports. Researchers looked at the production costs of ammonia which are similar to very low sulphur fuels, and concluded that the fuel could be a viable option to help decarbonize international shipping by 2050.
Published New study uses machine learning to bridge the reality gap in quantum devices



A study has used the power of machine learning to overcome a key challenge affecting quantum devices. For the first time, the findings reveal a way to close the 'reality gap': the difference between predicted and observed behavior from quantum devices.
Published Is natural spa water a fossil of water? Uncover the real ultra-deep water cycles



Researchers have made a groundbreaking discovery regarding the origins of non-meteoric water in natural spa waters located in central Japan. Based on numerical modeling, their results suggest that this water has been confined within the lithosphere for an extensive period of 1.5-5 million years. They identified three primary sources for this ancient water: the Philippine Sea Plate, the Pacific Plate, and ancient seafloor sediments, particularly in the Niigata and southwest Gunma regions.
Published Bottled water can contain hundreds of thousands of previously uncounted tiny plastic bits



In recent years, there has been rising concern that tiny particles known as microplastics are showing up basically everywhere on Earth, from polar ice to soil, drinking water and food. Formed when plastics break down into progressively smaller bits, these particles are being consumed by humans and other creatures, with unknown potential health and ecosystem effects. One big focus of research: bottled water, which has been shown to contain tens of thousands of identifiable fragments in each container. Now, using newly refined technology, researchers have entered a whole new plastic world: the poorly known realm of nanoplastics, the spawn of microplastics that have broken down even further. For the first time, they counted and identified these minute particles in bottled water. They found that on average, a liter contained some 240,000 detectable plastic fragments -- 10 to 100 times greater than previous estimates, which were based mainly on larger sizes.
Published Protecting coral 'nurseries' as important as safeguarding established coral reefs



New research in the southwestern part of Hawai'i Island shows that identifying and protecting marine ecosystems both down-current and up-current of coral reefs, specifically areas where coral larvae are more likely to survive and thrive, is crucial to future coral conservation and restoration efforts -- especially as reefs face increasing pressure from the devastating effects of climate change.
Published Revolutionizing stable and efficient catalysts with Turing structures for hydrogen production



Hydrogen energy has emerged as a promising alternative to fossil fuels, offering a clean and sustainable energy source. However, the development of low-cost and efficient catalysts for hydrogen evolution reaction remains a crucial challenge. Scientists have recently developed a novel strategy to engineer stable and efficient ultrathin nanosheet catalysts by forming Turing structures with multiple nanotwin crystals. This innovative discovery paves the way for enhanced catalyst performance for green hydrogen production.
Published Protected areas for elephants work best if they are connected



The largest analysis yet of African savannah elephant populations shows that conservationists have successfully protected elephants in southern Africa for the last 25 years. However, the pattern varies regionally, with some elephant populations soaring and others still facing large declines. The key to long-term stability appears to be connecting large core areas with neighboring buffer zones, as opposed to well-protected but isolated protected areas known as 'fortress conservation.'
Published Arctic cold snap transforms into a blessing



Scientists investigate the influence of Arctic cold air on carbon dioxide uptake of the east sea.
Published Male southern elephant seals are picky eaters



New research suggests these large marine mammals are extremely fussy and only eat their favorite foods.
Published Springs aboard -- gently feeling the way to grasp the microcosmos



The integration of mechanical memory in the form of springs has for hundreds of years proven to be a key enabling technology for mechanical devices (like clocks), achieving advanced functionality through complex autonomous movements. In our times, the integration of springs in silicon-based microtechnology has opened the world of planar mass-producible mechatronic devices from which we all benefit, via air-bag sensors for example.
Published Vitamin discovered in rivers may offer hope for salmon suffering from thiamine deficiency disease



Researchers have discovered vitamin B1 produced by microbes in rivers, findings that may offer hope for vitamin-deficient salmon populations.
Published Functional semiconductor made from graphene



Researchers have created the first functional semiconductor made from graphene, a single sheet of carbon atoms held together by the strongest bonds known. The breakthrough throws open the door to a new way of doing electronics.
Published Researchers boost signal amplification in perovskite nanosheets



Perovskite nanosheets show distinctive characteristics with significant applications in science and technology. In a recent study, researchers achieved enhanced signal amplification in CsPbBr3 perovskite nanosheets with a unique waveguide pattern, which enhanced both gain and thermal stability. These advancements carry wide-ranging implications for laser, sensor, and solar cell applications, and can potentially influence areas like environmental monitoring, industrial processes, and healthcare.
Published Re-calibrating the sail plan for Native Hawaiians, Pacific Islanders in ocean sciences



In Hawaii and across much of Oceania, Pacific Islanders celebrate the connections between their islands and the ocean that surrounds them.
Published Evolution might stop humans from solving climate change



Human culture has evolved to allow humans to extract resources and helped us expand to dominate the biosphere. But the same evolutionary processes may counteract efforts to solve new global environmental threats like climate change, according to a new study. Tackling the climate crisis will require worldwide regulatory, technical and economic systems supported by strong global cooperation. However, this new study concludes that the group-level processes characteristic of human cultural evolution, will cause environmental competition and conflict between sub-global groups, and work against global solutions. Adapting to climate change and other environmental problems will, therefore, require human evolution to change.
Published Understanding climate mobilities: New study examines perspectives from South Florida practitioners



A recent study assessed the perspectives of 76 diverse South Florida climate adaptation professionals. A new study explores the expectations and concerns of practitioners from the private sector, community-based organizations, and government agencies about the region's ability to adapt in the face of increasing sea level rise and diverse consequences for where people live and move, also known as climate mobility.