Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Geoscience: Geology
Published Why carbon nanotubes fluoresce when they bind to certain molecules



Nanotubes can serve as biosensors. They change their fluorescence when they bind to certain molecules. Until now, it was unclear why. Researchers have gained new insights into the cause of the fluorescence.
Published Innovative study unveils a new path in green chemistry



Researchers have introduced a new advancement in the fight against climate change. Their study showcases a novel method for understanding the mechanisms of carbon dioxide re-utilization leading to fuels and chemicals. This work paves the road for the further optimization of this catalytic process driven by renewable electricity.
Published Millions of years for plants to recover from global warming



Catastrophic volcanic eruptions that warmed the planet millions of years ago shed new light on how plants evolve and regulate climate. Researchers reveal the long-term effects of disturbed natural ecosystems on climate in geological history and its implications for today.
Published Record-breaking recovery of rocks that originated in Earth's mantle could reveal secrets of planet's history



Scientists have recovered the first long section of rocks that originated in the Earth's mantle, the layer below the crust and the planet's largest component. The rocks will help unravel the mantle's role in the origins of life on Earth, the volcanic activity generated when it melts, and how it drives the global cycles of important elements such as carbon and hydrogen.
Published Precise stirring conditions key to optimizing nanostructure synthesis



Stirring allows for homogenization and efficient gas exchange -- this fact has been known for decades. Controlling the stirring rate during the nanocluster synthesis is pivotal in achieving nanostructures with well-defined sizes, structures, optical properties, and stability.
Published X-ray imagery of vibrating diamond opens avenues for quantum sensing



Scientists at three research institutions capture the pulsing motion of atoms in diamond, uncovering the relationship between the diamond's strain and the behavior of the quantum information hosted within.
Published Water delivered to the mantle by aluminum enriched hydrated slabs?



Researchers found a notable effect of aluminum on the sound velocities of superhydrous phase B, a dense hydrous magnesium silicate and potential host of water in the deep Earth. Their results suggest that aluminous phase B could explain seismic velocity anomalies in the Earth's mantle transition region and uppermost lower mantle.
Published Scientists uncover hidden forces causing continents to rise



Scientists have answered one of the most puzzling questions in plate tectonics: how and why 'stable' parts of continents gradually rise to form some of the planet's greatest topographic features.
Published Soft gold enables connections between nerves and electronics



Gold does not readily lend itself to being turned into long, thin threads. But researchers have now managed to create gold nanowires and develop soft electrodes that can be connected to the nervous system. The electrodes are soft as nerves, stretchable and electrically conductive, and are projected to last for a long time in the body.
Published Concept for efficiency-enhanced noble-metal catalysts



The production of more than 90 percent of all chemical products we use in our everyday lives relies on catalysts. Catalysts speed up chemical reactions, can reduce the energy required for these processes, and in some cases, reactions would not be possible at all without catalysts. Researchers developed a concept that increases the stability of noble-metal catalysts and requires less noble metal for their production.
Published Greenland fossil discovery reveals increased risk of sea-level catastrophe



Seeds, twigs, and insect parts found under two miles of ice confirm Greenland's ice sheet melted in the recent past, the first direct evidence that the center -- not just the edges -- of the two-mile-deep ice melted away in the recent geological past. The new research indicates that the giant ice sheet is more fragile than scientists had realized until the last few years -- and reveals increased risk of sea-level catastrophe in a warmer future.
Published New model refutes leading theory on how Earth's continents formed



Computational modeling shows that plate tectonics weren't necessary for early continents.
Published Novel ultrafast electron microscopy technique advances understanding of processes applicable to brain-like computing



A team developed a new microscopy technique that uses electrical pulses to track the nanosecond dynamics within a material that is known to form charge density waves. Controlling these waves may lead to faster and more energy-efficient electronics.
Published How the rising earth in Antarctica will impact future sea level rise



The rising earth beneath the Antarctic Ice Sheet will likely become a major factor in future sea level rise, a new study suggests.
Published Link between global warming and rising sea levels



A new study suggests that Earth's natural forces could substantially reduce Antarctica's impact on rising sea levels, but only if carbon emissions are swiftly reduced in the coming decades. By the same token, if emissions continue on the current trajectory, Antarctic ice loss could lead to more future sea level rise than previously thought.
Published Stacked up against the rest



Scientists have hypothesized that moir excitons -- electron-hole pairs confined in moir interference fringes which overlap with slightly offset patterns -- may function as qubits in next-generation nano-semiconductors. However, due to diffraction limits, it has not been possible to focus light enough in measurements, causing optical interference from many moir excitons. To solve this, researchers have developed a new method of reducing these moir excitons to measure the quantum coherence time and realize quantum functionality.
Published Sustainable and reversible 3D printing method uses minimal ingredients and steps



A new 3D printing method developed by engineers is so simple that it uses a polymer ink and salt water solution to create solid structures. The work has the potential to make materials manufacturing more sustainable and environmentally friendly.
Published Pursuing the middle path to scientific discovery



Scientists have made significant strides in understanding the properties of a ferroelectric material under an electric field. This breakthrough holds potential for advances in computer memory, lasers and sensors for ultraprecise measurements.
Published Recent volcanic 'fires' in Iceland triggered by storage and melting in crust



Scientists have detected geochemical signatures of magma pooling and melting beneath the subsurface during the 'Fagradalsfjall Fires', that began on Iceland's Reykjanes peninsula in 2021. Samples show that the start of the eruption began with massive pooling of magma, contrasting initial hypothesis for magma ascent straight from the mantle.
Published Researchers identify unique phenomenon in Kagome metal



A new study focuses on how a particular Kagome metal interacts with light to generate what are known as plasmon polaritons -- nanoscale-level linked waves of electrons and electromagnetic fields in a material, typically caused by light or other electromagnetic waves.