Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: General
Published

Strength is in this glass's DNA      (via sciencedaily.com)     Original source 

Scientists were able to fabricate a pure form of glass and coat specialized pieces of DNA with it to create a material that was not only stronger than steel, but incredibly lightweight.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Crystallization as the driving force      (via sciencedaily.com) 

Scientists have successfully developed nanomaterials using a so-called bottom-up approach. They exploit the fact that crystals often grow in a specific direction during crystallization. These resulting nanostructures, which appear as 'worm-like and decorated rods,' could be used in various technological applications.

Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Physics: General
Published

Nanofluidic device generates power with saltwater      (via sciencedaily.com)     Original source 

There is a largely untapped energy source along the world's coastlines: the difference in salinity between seawater and freshwater. A new nanodevice can harness this difference to generate power.

Anthropology: Cultures Anthropology: Early Humans Anthropology: General Archaeology: General Geoscience: Environmental Issues Paleontology: Fossils Paleontology: General
Published

Pollen analysis suggests peopling of Siberia and Europe by modern humans occurred during a major Pleistocene warming spell      (via sciencedaily.com)     Original source 

A new study appearing in Science Advances compares Pleistocene vegetation communities around Lake Baikal in Siberia, Russia, to the oldest archeological traces of Homo sapiens in the region. The researchers use the 'remarkable evidence' to tell a compelling story from 45,000-50,000 years ago with new detail: how the first humans migrated across Europe and Asia.

Anthropology: Early Humans Anthropology: General Archaeology: General Environmental: Ecosystems
Published

Probing the deep genetic structure of Africa      (via sciencedaily.com)     Original source 

Using ancestry decomposition techniques an international research team has revealed a deeply divergent ancestry among admixed populations from the Angolan Namib desert. This unique genetic heritage brings the researchers closer to understanding the distribution of genetic variation in the broader region of southern Africa before the spread of food production.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Nanoparticles made from plant viruses could be farmers' new ally in pest control      (via sciencedaily.com) 

Engineers have devised a new solution to control a major agricultural menace, root-damaging nematodes. Using plant viruses, the researchers created nanoparticles that can deliver pesticide molecules to previously inaccessible depths in the soil. This 'precision farming' approach could potentially minimize environmental toxicity and cut costs for farmers.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Scaling up the power of nanotechnology      (via sciencedaily.com) 

Researchers created a proof of concept of a nanocapsule -- a microscopic container -- capable of delivering a specific 'payload' to a targeted location. While beyond the scope of this study, the discovery could one day impact how drugs, nutrients and other types of chemical compounds are delivered within humans or plants.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

Making contact: Researchers wire up individual graphene nanoribbons      (via sciencedaily.com) 

Researchers have developed a method of 'wiring up' graphene nanoribbons (GNRs), a class of one-dimensional materials that are of interest in the scaling of microelectronic devices. Using a direct-write scanning tunneling microscopy (STM) based process, the nanometer-scale metal contacts were fabricated on individual GNRs and could control the electronic character of the GNRs. The researchers say that this is the first demonstration of making metal contacts to specific GNRs with certainty and that those contacts induce device functionality needed for transistor function.

Engineering: Nanotechnology Physics: General
Published

Stabilizing precipitate growth at grain boundaries in alloys      (via sciencedaily.com) 

Materials are often considered to be one phase, but many engineering materials contain two or more phases, improving their properties and performance. These two-phase materials have inclusions, called precipitates, embedded in the microstructure. Alloys, a combination of two or more types of metals, are used in many applications, like turbines for jet engines and light-weight alloys for automotive applications, because they have very good mechanical properties due to those embedded precipitates. The average precipitate size, however, tends to increase over time-in a process called coarsening-which results in a degradation of performance for microstructures with nanoscale precipitates.

Anthropology: Cultures Anthropology: Early Humans Anthropology: General Archaeology: General Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Archaeologists discover world's oldest wooden structure      (via sciencedaily.com)     Original source 

Half a million years ago, earlier than was previously thought possible, humans were building structures made of wood, according to new research.

Energy: Alternative Fuels Energy: Technology Engineering: Nanotechnology Environmental: General
Published

Efficient next-generation solar panels on horizon following breakthrough      (via sciencedaily.com) 

A scientific breakthrough brings mass production of the next generation of cheaper and lighter perovskite solar cells one step closer.

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Evolutionary Biology: Microbiology Biology: Zoology Ecology: Extinction Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

Slow growth in crocodile ancestors pre-dated their semi-aquatic lifestyle      (via sciencedaily.com)     Original source 

A groundbreaking study is reshaping our understanding of crocodile evolution by pinpointing the onset of slow growth rates to the Late Triassic period, much earlier than the previously assumed Early Jurassic timeline. The research highlights newly discovered fossil crocodile ancestors (known as crocodylomorphs) that exhibited slow growth rates, similar to modern-day crocodilians. Intriguingly, these early crocodylomorphs were not the lethargic, semi-aquatic creatures we are familiar with today; they were small, active, and fully terrestrial. The study also suggests that this slow-growth strategy was not a mere evolutionary quirk but a survival mechanism, as only the slow-growing crocodylomorphs managed to survive the End-Triassic mass extinction. This stands in stark contrast to the fast-growing dinosaurs of the same era, setting the stage for the divergent evolutionary paths that would later define their modern descendants.

Chemistry: Thermodynamics Energy: Alternative Fuels Engineering: Nanotechnology Physics: Optics
Published

Chameleon-inspired coating could cool and warm buildings through the seasons      (via sciencedaily.com) 

As summer turns to fall, many people will be turning off the air conditioning and firing up heaters instead. But traditional heating and cooling systems are energy intensive, and because they typically run on fossil fuels, they aren't sustainable. Now, by mimicking a desert-dwelling chameleon, a team has developed an energy-efficient, cost-effective coating. The material could keep buildings cool in the summers -- or warm in the winters -- without additional energy.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Precisely arranging nanoparticles      (via sciencedaily.com) 

In the incredibly small world of molecules, the elementary building blocks -- the atoms -- join together in a very regular pattern. In contrast, in the macroscopic world with its larger particles, there is much greater disorder when particles connect. A research team has now succeeded in achieving the same precise arrangement of atoms shown in molecules, but using nanometer-sized particles, known as 'plasmonic molecules' -- combinations of nanoscale metallic structures that have unique properties.

Engineering: Nanotechnology
Published

Research identifies new potential hurdle for nano-based therapies      (via sciencedaily.com) 

Researchers have discovered that certain nano-based cancer therapies may be less effective in younger patients, highlighting the need for further investigation into the impact of aging on the body's ability to respond to treatment. The researchers found age-related differences are due to how effectively the liver filters the bloodstream. Younger livers are more efficient at this process, which helps limit toxins in the blood but also filters out beneficial treatments, potentially rendering them ineffective.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Tiny nanocarriers could prove the magic bullet for acne sufferers      (via sciencedaily.com) 

It's a skin disorder that makes life miserable for around 800 million teenagers and adults worldwide, but cientists may have found an effective treatment for acne, delivered via tiny nanoparticles.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Engineering: Nanotechnology Environmental: General Geoscience: Geochemistry
Published

Pixel-by-pixel analysis yields insights into lithium-ion batteries      (via sciencedaily.com) 

By mining X-ray images, researchers have made significant new discoveries about the reactivity of lithium iron phosphate, a material used in batteries for electric cars and in other rechargeable batteries.

Biology: Cell Biology Biology: Microbiology Engineering: Nanotechnology
Published

Ultrathin nanotech promises to help tackle antibiotic resistance      (via sciencedaily.com) 

Researchers have invented a nano-thin superbug-slaying material that could one day be integrated into wound dressings and implants to prevent or heal bacterial infections. The innovation -- which has undergone advanced pre-clinical trials -- is effective against a broad range of drug-resistant bacterial cells, including 'golden staph', which are commonly referred to as superbugs.

Anthropology: Early Humans Anthropology: General Biology: Evolutionary Ecology: Animals Ecology: Trees Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Human shoulders and elbows first evolved as brakes for climbing apes      (via sciencedaily.com)     Original source 

Researchers report that the flexible shoulders and elbows that allow us to throw a football or reach a high shelf may have evolved as a natural braking system that let our primate ancestors get out of trees without dying. The researchers used sports-analysis software to compare the climbing movements of chimpanzees and small monkeys called mangabeys. While the animals climb up trees similarly, the researchers found that the shallow, rounded shoulder joints and shortened elbow bones that chimps have -- similar to humans -- allow them to fully extend their arms above their heads when climbing down, holding onto branches like a person going down a ladder to support their greater weight. When early humans left forests for the grassy savanna, these versatile appendages would have been essential for gathering food and using tools for hunting and defense. The findings are among the first to identify the significance of 'downclimbing' in the evolution of apes and early humans.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Atomic-scale spin-optical laser: New horizon of optoelectronic devices      (via sciencedaily.com) 

Researchers have pushed the limits of the possible in the field of atomic-scale spin-optics, creating a spin-optical laser from monolayer-integrated spin-valley microcavities without requiring magnetic fields or cryogenic temperatures.