Showing 20 articles starting at article 181

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Nanotechnology, Paleontology: Fossils

Return to the site home page

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Geochemistry
Published

Nanoscale movies shed light on one barrier to a clean energy future      (via sciencedaily.com)     Original source 

New research is shedding light on one barrier to a clean energy future: corrosion. Using nanoscale imaging techniques, researchers have captured high-resolution videos of tiny crystals of ruthenium dioxide -- a key ingredient used to produce clean-burning hydrogen -- as they are eaten away by their acidic environment. The research could pave the way to more durable catalysts and dramatically extend the lifetime of devices needed to turn hydrogen green.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Nothing is everything: How hidden emptiness can define the usefulness of filtration materials      (via sciencedaily.com)     Original source 

Voids, or empty spaces, exist within matter at all scales, from the astronomical to the microscopic. In a new study, researchers used high-powered microscopy and mathematical theory to unveil nanoscale voids in three dimensions. This advancement is poised to improve the performance of many materials used in the home and in the chemical, energy and medical industries -- particularly in the area of filtration.

Computer Science: General Computer Science: Virtual Reality (VR) Engineering: Nanotechnology
Published

Waterproof 'e-glove' could help scuba divers communicate      (via sciencedaily.com)     Original source 

When scuba divers need to say 'I'm okay' or 'Shark!' to their dive partners, they use hand signals to communicate visually. But sometimes these movements are difficult to see. Now, researchers have constructed a waterproof 'e-glove' that wirelessly transmits hand gestures made underwater to a computer that translates them into messages. The new technology could someday help divers communicate better with each other and with boat crews on the surface.

Biology: Cell Biology Biology: Microbiology Biology: Zoology Ecology: Extinction Ecology: Sea Life Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

Do some mysterious bones belong to gigantic ichthyosaurs?      (via sciencedaily.com)     Original source 

Several similar large, fossilized bone fragments have been discovered in various regions across Western and Central Europe since the 19th century. The animal group to which they belonged is still the subject of much debate to this day. A study could now settle this dispute once and for all: The microstructure of the fossils indicates that they come from the lower jaw of a gigantic ichthyosaur. These animals could reach 25 to 30 meters in length, a similar size to the modern blue whale.

Biology: Evolutionary Biology: Zoology Ecology: Animals Ecology: Nature Environmental: Ecosystems Paleontology: Dinosaurs Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

Dinosaur study challenges Bergmann's rule      (via sciencedaily.com)     Original source 

A new study calls into question Bergmann's rule, an 1800s-era scientific principle stating that animals in high-latitude, cooler climates tend to be larger than close relatives living in warmer climates.

Ecology: Extinction Paleontology: Dinosaurs Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

Early dinosaurs grew up fast, but they weren't the only ones      (via sciencedaily.com)     Original source 

The earliest dinosaurs had rapid growth rates, but so did many of the other animals living alongside them, according to a new study.

Energy: Nuclear Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers discover 'neutronic molecules'      (via sciencedaily.com)     Original source 

Researchers have discovered 'neutronic' molecules, in which neutrons can be made to cling to quantum dots, held just by the strong force. The finding may lead to new tools for probing material properties at the quantum level and exploring new kinds of quantum information processing devices.

Anthropology: Early Humans Anthropology: General Archaeology: General Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Zoology Ecology: Animals Paleontology: Fossils
Published

When did the chicken cross the road? New evidence from Central Asia      (via sciencedaily.com)     Original source 

An international team of scholars present the earliest clear archaeological and biomolecular evidence for the raising of chickens for egg production, based on material from 12 archaeological sites spanning one and a half millennia. The research indicates that the domestic chicken, now a staple in diets around the world, is not as ancient as previously thought.

Chemistry: Biochemistry Energy: Technology Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers discover dual topological phases in an intrinsic monolayer crystal      (via sciencedaily.com)     Original source 

An international team working with single-atom thick crystals found TaIrTe4's transition between the two distinct topological states of insulation and conduction. The material exhibited zero electrical conductivity within its interior, while its boundaries remain conductive. The team's investigation determined that the two topological states stem from disparate origins. The novel properties can serve as a promising platform for exploring exotic quantum phases and electromagnetism.

Anthropology: Cultures Anthropology: General Archaeology: General Offbeat: General Offbeat: Paleontology and Archeology Paleontology: Fossils
Published

Ancient DNA reveals the appearance of a 6th century Chinese emperor      (via sciencedaily.com)     Original source 

What did an ancient Chinese emperor from 1,500 years ago look like? A team of researchers reconstructed the face of Chinese Emperor Wu of Northern Zhou using DNA extracted from his remains. The study suggests the emperor's death at the age of 36 might be linked to a stroke. It also sheds light on the origin and migration patterns of a nomadic empire that once ruled parts of northeastern Asia.

Engineering: Nanotechnology Physics: Optics
Published

Can metalens be commercialized at a fraction of the cost?      (via sciencedaily.com)     Original source 

Researchers suggests a groundbreaking strategy to expedite the commercialization of metalens technology.

Engineering: Nanotechnology Physics: Optics
Published

A tiny spot leads to a large advancement in nano-processing, researchers reveal      (via sciencedaily.com)     Original source 

Focusing a tailored laser beam through transparent glass can create a tiny spot inside the material. Researchers have reported on a way to use this small spot to improve laser material processing, boosting processing resolution.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

Researchers create biocompatible nanoparticles to enhance systemic delivery of cancer immunotherapy      (via sciencedaily.com)     Original source 

Researchers are enhancing immunotherapy effects against malignant tumors by developing and validating patent-ending poly (lactic-co-glycolic acid), or PLGA, nanoparticles modified with adenosine triphosphate, or ATP.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

New method to measure entropy production on the nanoscale      (via sciencedaily.com)     Original source 

Entropy, the amount of molecular disorder, is produced in several systems but cannot be measured directly. A new equation sheds new light on how entropy is produced on a very short time scale in laser excited materials.

Biology: Biochemistry Biology: Microbiology Chemistry: Biochemistry Engineering: Nanotechnology
Published

Silicon spikes take out 96% of virus particles      (via sciencedaily.com)     Original source 

An international research team has designed and manufactured a virus-killing surface that could help control disease spread in hospitals, labs and other high-risk environments.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

Micro-Lisa! Making a mark with novel nano-scale laser writing      (via sciencedaily.com)     Original source 

High-power lasers are often used to modify polymer surfaces to make high-tech biomedical products, electronics and data storage components. Now researchers have discovered a light-responsive, inexpensive sulfur-derived polymer is receptive to low power, visible light lasers -- promising a more affordable and safer production method in nanotech, chemical science and patterning surfaces in biological applications.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Research lights up process for turning CO2 into sustainable fuel      (via sciencedaily.com)     Original source 

Researchers have successfully transformed CO2 into methanol by shining sunlight on single atoms of copper deposited on a light-activated material, a discovery that paves the way for creating new green fuels.

Chemistry: General Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Physics: Optics
Published

A self-cleaning wall paint      (via sciencedaily.com)     Original source 

Beautiful white wall paint does not stay beautiful and white forever. Often, various substances from the air accumulate on its surface. This can be a desired effect because it makes the air cleaner for a while -- but over time, the color changes and needs to be renewed. Now, special titanium oxide nanoparticles have been developed that can be added to ordinary, commercially available wall paint to establish self-cleaning power: The nanoparticles are photocatalytically active, they can use sunlight not only to bind substances from the air, but also to decompose them afterwards.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum interference could lead to smaller, faster, and more energy-efficient transistors      (via sciencedaily.com)     Original source 

Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.