Showing 20 articles starting at article 681
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Offbeat: Space
Published Life after death: Astronomers find a planet that shouldn't exist



The star would have inflated up to 1.5 times the planet's orbital distance -- engulfing the planet in the process -- before shrinking to its current size at only one-tenth of that distance.
Published Starlight and the first black holes: researchers detect the host galaxies of quasars in the early universe



For the first time, the James Webb Space Telescope has revealed starlight from two massive galaxies hosting actively growing black holes -- quasars -- seen less than a billion years after the Big Bang.
Published Magnetic bacteria point the way



Magnetotactic bacteria, which can align with the Earth's magnetic field, have been discovered in a new location. Previously observed on land and in shallow water, analysis of a hydrothermal vent has proven that they can also survive deep under the ocean. The bacteria were able to exist in an environment that was not ideal for their typical needs. Magnetotactic bacteria are of interest not only for the role they play in Earth's ecosystem, but also in the search for extraterrestrial life. Evidence of their existence can remain in rocks for billions of years. Their magnetic inclinations can also provide a record of how magnetic poles have shifted over time. This new discovery brings hope to researchers that the magnetic bacteria might be found in yet more unexpected locations, on Earth and perhaps even on Mars or beyond.
Published Nanophotonics: Coupling light and matter



Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).
Published Einstein and Euler put to the test at the edge of the Universe



The cosmos is a unique laboratory for testing the laws of physics, in particular those of Euler and Einstein. Euler described the movements of celestial objects, while Einstein described the way in which celestial objects distort the Universe. Since the discovery of dark matter and the acceleration of the Universe's expansion, the validity of their equations has been put to the test: are they capable of explaining these mysterious phenomena? A team has developed the first method to find out. It considers a never-before-used measure: time distortion.
Published Molecular filament shielded young solar system from supernova



Isotope ratios found in meteorites suggest that a supernova exploded nearby while the Sun and Solar System were still forming. But the blast wave from a supernova that close could have potentially destroyed the nascent Solar System. New calculations shows that a filament of molecular gas, which is the birth cocoon of the Solar System, aided the capture of the isotopes found in the meteorites, while acting as a buffer protecting the young Solar System from the nearby supernova blast.
Published Never-before-seen way to annihilate a star



Astronomers studying a powerful gamma-ray burst, may have detected a never-before-seen way to destroy a star. Unlike most GRBs, which are caused by exploding massive stars or the chance mergers of neutron stars, astronomers have concluded that this GRB came instead from the collision of stars or stellar remnants in the jam-packed environment surrounding a supermassive black hole at the core of an ancient galaxy.
Published Detection of an echo emitted by our Galaxy's black hole 200 years ago



An international team of scientists has discovered that Sagittarius A* (Sgr A*), the supermassive black hole at the centre of the Milky Way, emerged from a long period of dormancy some 200 years ago. The team, led by Frédéric Marin, a CNRS researcher at the Astronomical Strasbourg Observatory (CNRS/University of Strasbourg), has revealed the past awakening of this gigantic object, which is four million times more massive than the Sun. Their work is published in Nature on 21 June.
Published Exoplanet may reveal secrets about the edge of habitability



How close can a rocky planet be to a star, and still sustain water and life? A recently discovered exoplanet may be key to solving that mystery.
Published Navigating underground with cosmic-ray muons



Superfast, subatomic-sized particles called muons have been used to wirelessly navigate underground in a reportedly world first. By using muon-detecting ground stations synchronized with an underground muon-detecting receiver, researchers were able to calculate the receiver's position in the basement of a six-story building. As GPS cannot penetrate rock or water, this new technology could be used in future search and rescue efforts, to monitor undersea volcanoes, and guide autonomous vehicles underground and underwater.
Published Researchers demystify the unusual origin of the Geminids meteor shower



Princeton researchers used observations from NASA's Parker Solar Probe mission to deduce that it was likely a violent, catastrophic event -- such as a high-speed collision with another body or a gaseous explosion -- that created the Geminids meteoroid stream. Mysteries surrounding the origin of the Geminids have long fascinated scientists because, while most meteor showers are created when a comet emits a tail of ice and dust, the Geminids stem from an asteroid -- a chunk of rock that normally does not produce a tail. Until now, this unusual meteoroid stream had only been studied from Earth.
Published Discovery of white dwarf pulsar sheds light on star evolution



The discovery of a rare type of white dwarf star system provides new understanding into stellar evolution.
Published Cleaner air with a cold catalytic converter



Although passenger vehicle catalytic converters have been mandatory for over 30 years, there is still plenty of room for improvement. For instance, they only work correctly when the engine is sufficiently hot, which is not always the case, especially with hybrid vehicles. Researchers have now developed an improved catalyst that can properly purify exhaust gases even at room temperature.
Published Energy harvesting via vibrations: Researchers develop highly durable and efficient device



An international research group has engineered a new energy-generating device by combining piezoelectric composites with carbon fiber-reinforced polymer (CFRP), a commonly used material that is both light and strong. The new device transforms vibrations from the surrounding environment into electricity, providing an efficient and reliable means for self-powered sensors.
Published Terahertz-to-visible light conversion for future telecommunications



A study demonstrates that graphene-based materials can be used to efficiently convert high-frequency signals into visible light, and that this mechanism is ultrafast and tunable. These outcomes open the path to exciting applications in near-future information and communication technologies.
Published Scientists report 'benchmarks' for extreme space weather



Extreme space weather threatens vital satellites orbiting the Earth, including the Global Navigation Satellite Systems (GNSS) which pass through the heart of the outer radiation belt. New research has now determined a series of benchmarks for the likely severity of extreme space weather events in GPS orbit.
Published Nanomaterials: 3D printing of glass without sintering



A new process enables printing of nanometer-scale quartz glass structures directly onto semiconductor chips. A hybrid organic-inorganic polymer resin is used as feedstock material for 3D printing of silicon dioxide. Since the process works without sintering, the required temperatures are significantly lower. Simultaneously, increased resolution enables visible-light nanophotonics.
Published Astronomers discover new link between dark matter and clumpiness of the universe



Researchers reveal a theoretical breakthrough that may explain both the nature of invisible dark matter and the large-scale structure of the universe known as the cosmic web. The result establishes a new link between these two longstanding problems in astronomy, opening new possibilities for understanding the cosmos. The research suggests that the 'clumpiness problem,' which centres on the unexpectedly even distribution of matter on large scales throughout the cosmos, may be a sign that dark matter is composed of hypothetical, ultra-light particles called axions. The implications of proving the existence of hard-to-detect axions extend beyond understanding dark matter and could address fundamental questions about the nature of the universe itself.
Published Earth was created much faster than we thought: This makes the chance of finding other habitable planets in the Universe more likely



Over the past decades, researchers thought Earth was created over a period of more than 100 million years. However, a new study from suggests that the creation of Earth was much more rapid, and that water and other essential ingredients for life were delivered to Earth very early on.
Published A scorching-hot exoplanet scrutinized by astronomers



Through the Gemini-North Telescope in Hawai'i, the chemical composition of WASP-76 b is revealed in unprecedented detail, giving new insights also into the composition of giant planets.