Computer Science: Artificial Intelligence (AI) Computer Science: General Offbeat: Computers and Math Offbeat: General
Published

AI headphones let wearer listen to a single person in a crowd, by looking at them just once      (via sciencedaily.com)     Original source 

Engineers have developed an artificial intelligence system that lets someone wearing headphones look at a person speaking for three to five seconds to 'enroll' them. The system then plays just the enrolled speaker's voice in real time, even as the pair move around in noisy environments.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Fossil Fuels Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Controlling water, transforming greenhouse gases      (via sciencedaily.com)     Original source 

Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.

Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: General
Published

Imperceptible sensors made from 'electronic spider silk' can be printed directly on human skin      (via sciencedaily.com)     Original source 

Researchers have developed a method to make adaptive and eco-friendly sensors that can be directly and imperceptibly printed onto a wide range of biological surfaces, whether that's a finger or a flower petal.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

How a tiny device could lead to big physics discoveries and better lasers      (via sciencedaily.com)     Original source 

Researchers have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: Acoustics and Ultrasound
Published

Wearable ultrasound patch enables continuous, non-invasive monitoring of cerebral blood flow      (via sciencedaily.com)     Original source 

Engineers have developed a wearable ultrasound patch that can offer continuous, non-invasive monitoring of blood flow in the brain. The soft and stretchy patch can be comfortably worn on the temple to provide three-dimensional data on cerebral blood flow--a first in wearable technology.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Under extreme impacts, metals get stronger when heated, study finds      (via sciencedaily.com)     Original source 

Scientists have discovered that when metal is struck by an object moving at a super high velocity, the heat makes the metal stronger. The finding could lead to new approaches to designing materials for extreme environments, such as shields that protect spacecraft or equipment for high-speed manufacturing.

Biology: Biochemistry Biology: Developmental Offbeat: Computers and Math Offbeat: General Offbeat: Plants and Animals
Published

New AI accurately predicts fly behavior      (via sciencedaily.com)     Original source 

Researchers trained an AI model to accurately predict male fruit flies' courtship behavior in response to any sight of a female. This breakthrough offers new insight into how the brain processes visual data and may someday pave the way for artificial vision technology.

Chemistry: Thermodynamics Engineering: Nanotechnology Offbeat: General Physics: General Physics: Quantum Computing
Published

Strings that can vibrate forever (kind of)      (via sciencedaily.com)     Original source 

Researchers have engineered string-like resonators capable of vibrating longer at ambient temperature than any previously known solid-state object -- approaching what is currently only achievable near absolute zero temperatures. Their study pushes the edge of nanotechnology and machine learning to make some of the world's most sensitive mechanical sensors.

Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Recycling carbon dioxide into household chemicals      (via sciencedaily.com)     Original source 

Scientists report a family of tin-based catalysts that efficiently converts CO2 into ethanol, acetic acid and formic acid. These liquid hydrocarbons are among the most produced chemicals in the U.S and are found in many commercial products.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

3D printing robot creates extreme shock-absorbing shape, with help of AI      (via sciencedaily.com)     Original source 

See how an autonomous robot created a shock-absorbing shape no human ever could -- and what it means for designing safer helmets, packaging, car bumpers, and more.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Powering wearable devices with high-performing carbon nanotube yarns      (via sciencedaily.com)     Original source 

Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Enhancing superconductivity of graphene-calcium superconductors      (via sciencedaily.com)     Original source 

Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.

Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology
Published

Blueprints of self-assembly      (via sciencedaily.com)     Original source 

Scientists have taken a step closer to replicating nature's processes of self-assembly. The study describes the synthetic construction of a tiny, self-assembled crystal known as a 'pyrochlore,' which bears unique optical properties. The advance provides a steppingstone to the eventual construction of sophisticated, self-assembling devices at the nanoscale -- roughly the size of a single virus.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

2D materials: A catalyst for future quantum technologies      (via sciencedaily.com)     Original source 

Researchers have discovered that a 'single atomic defect' in a layered 2D material can hold onto quantum information for microseconds at room temperature. This underscores the broader potential of 2D materials in advancing quantum technologies.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Expanding on the fundamental principles of liquid movement      (via sciencedaily.com)     Original source 

We are living in a world surrounded by liquid and flow, and understanding the principles that govern its movement is vital in our high-tech world. Through mathematical modeling and experimentation, researchers have expanded on Tanner's Law -- a law in fluid dynamics that describes how non-volatile liquids move across surfaces -- to cover a wider range of volatile liquids. These findings have the potential to play a role in various liquid-based industries such as electronics cooling.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics
Published

Ion irradiation offers promise for 2D material probing      (via sciencedaily.com)     Original source 

Two-dimensional materials such as graphene promise to form the basis of incredibly small and fast technologies, but this requires a detailed understanding of their electronic properties. New research demonstrates that fast electronic processes can be probed by irradiating the materials with ions first.

Chemistry: Biochemistry Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Physicists propose path to faster, more flexible robots      (via sciencedaily.com)     Original source 

Physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

World's smallest quantum light detector on a silicon chip      (via sciencedaily.com)     Original source 

Researchers have made an important breakthrough in scaling quantum technology by integrating the world's tiniest quantum light detector onto a silicon chip.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics
Published

Diamond glitter: A play of colors with artificial DNA crystals      (via sciencedaily.com)     Original source 

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.

Computer Science: Artificial Intelligence (AI) Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: General
Published

Building a better sarcasm detector      (via sciencedaily.com)     Original source 

Sarcasm is notoriously tricky to convey through text, and the subtle changes in tone that convey sarcasm often confuse computer algorithms as well, limiting virtual assistants and content analysis tools. So researchers have now developed a multimodal algorithm for improved sarcasm detection that examines multiple aspects of audio recordings for increased accuracy. They used two complementary approaches -- sentiment analysis using text and emotion recognition using audio -- for a more complete picture.