Showing 20 articles starting at article 521
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Offbeat: Computers and Math
Published A novel approach for balancing properties in composite materials


Scientists are developing an approach to enhance multifunctionality and structural properties simultaneously by embedding patterned nanostructures in composite materials, which could result in more efficient energy systems enhancing everyday life.
Published Towards artificial photosynthesis with engineering of protein crystals in bacteria


In-cell engineering can be a powerful tool for synthesizing functional protein crystals with promising catalytic properties. Using genetically modified bacteria as an environmentally friendly synthesis platform, the researchers produced hybrid solid catalysts for artificial photosynthesis. These catalysts exhibit high activity, stability, and durability, highlighting the potential of the proposed innovative approach.
Published Washable, transparent, and flexible OLED with MXene nanotechnology?


Transparent and flexible displays, which have received a lot of attention in various fields including automobile displays, bio-healthcare, military, and fashion, are in fact known to break easily when experiencing small deformations. To solve this problem, active research is being conducted on many transparent and flexible conductive materials such as carbon nanotubes, graphene, silver nanowires, and conductive polymers.
Published Detection of bacteria and viruses with fluorescent nanotubes


The new carbon nanotube sensor design resembles a molecular toolbox that can be used to quickly assemble sensors for a variety of purposes -- for instance for detecting bacteria and viruses.
Published Future AI algorithms have potential to learn like humans


Memories can be as tricky to hold onto for machines as they can be for humans. To help understand why artificial agents develop holes in their own cognitive processes, electrical engineers have analyzed how much a process called 'continual learning' impacts their overall performance.
Published Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics


Scientists have demonstrated experimentally a long-theorized relationship between electron and nuclear motion in molecules, which could lead to the design of materials for solar cells, electronic displays and other applications that can make use of this powerful quantum phenomenon.
Published Researchers put a new twist on graphite



Researchers report that it is possible to imbue graphite -- the bulk, 3D material found in No. 2 pencils -- with physical properties similar to graphite's 2D counterpart, graphene. Not only was this breakthrough unexpected, the team also believes its approach could be used to test whether similar types of bulk materials can also take on 2D-like properties. If so, 2D sheets won't be the only source for scientists to fuel technological revolutions. Bulk, 3D materials could be just as useful.
Published Researchers achieve historic milestone in energy capacity of supercapacitors



In a new landmark chemistry study, researchers describe how they have achieved the highest level of energy storage -- also known as capacitance -- in a supercapacitor ever recorded.
Published A faster way to teach a robot


A new technique enables a human to efficiently fine-tune a robot that failed to complete a desired task with very little effort on the part of the human. Their system uses algorithms, counterfactual explanations, and feedback from the user to generate synthetic data it uses to quickly fine-tune the robot.
Published Engineers' storage technology keeps nanosurfaces clean


Engineers have created containers that can keep volatile organic compounds from accumulating on the surfaces of stored nanomaterials. Their portable and inexpensive technology improves on a 50-year-old idea to address a ubiquitous problem in nanomanufacturing and materials science.
Published ROSE: Revolutionary, nature-inspired soft embracing robotic gripper


Soft robotic grippers could greatly increase productivity in many fields. However, currently existing designs are overly complex and expensive. A research team has developed ROSE, a novel embracing soft gripper inspired by the blooming and closing of rose flowers. Bearing a surprisingly simple, inexpensive, and scalable design, ROSE can pick up many kinds of objects without damaging them, even in challenging environments and conditions.
Published Analogous to algae: Scientists move toward engineering living matter by manipulating movement of microparticles


A team of scientists has devised a system that replicates the movement of naturally occurring phenomena, such as hurricanes and algae, using laser beams and the spinning of microscopic rotors.
Published New material could hold key to reducing energy consumption in computers and electronics


A University of Minnesota Twin Cities team has, for the first time, synthesized a thin film of a unique topological semimetal material that has the potential to generate more computing power and memory storage while using significantly less energy.
Published New superconductors can be built atom by atom


The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.
Published Participating in genetic studies is in your genes



Why do some people take part in genetic studies while others do not? The answer may lie within our genetic makeup. According to a groundbreaking study, people who participate in genetic studies are genetically more likely to do so, leaving detectable 'footprints' in genetics data. This breakthrough equips researchers with the ability to identify and address participation bias, a significant challenge in genetic research.
Published Surgical and engineering innovations enable unprecedented control over every finger of a bionic hand


For the first time, a person with an arm amputation can manipulate each finger of a bionic hand as if it was his own. Thanks to revolutionary surgical and engineering advancements that seamlessly merge humans with machines, this breakthrough offers new hope and possibilities for people with amputations worldwide. A study presents the first documented case of an individual whose body was surgically modified to incorporate implanted sensors and a skeletal implant. A.I. algorithms then translated the user's intentions into movement of the prosthesis.
Published Generative AI 'fools' scientists with artificial data, bringing automated data analysis closer



The same AI technology used to mimic human art can now synthesize artificial scientific data, advancing efforts toward fully automated data analysis.
Published Researchers visualize activity of CRISPR genetic scissors



Scientists have developed a new method to measure the smallest twists and torques of molecules within milliseconds. The method makes it possible to track the gene recognition of CRISPR-Cas protein complexes, also known as 'genetic scissors', in real time and with the highest resolution. With the data obtained, the recognition process can be accurately characterized and modeled to improve the precision of the genetic scissors.
Published Towards crack-resistant nanoparticle-based latex films


Synthetic latex films are widely used across many fields, but they usually contain harmful additives to enhance their strength. In a recent study, researchers have developed a new class of latex films composed of rotaxane-crosslinked acrylic nanoparticles. These films exhibit remarkable mechanical properties, including excellent crack-propagation resistance without any additives, and are easily recyclable, paving the way for more environmentally friendly materials.
Published Bound states in the continuum is possible in the acoustoelastic coupling


Professor Junsuk Rho's research team at POSTECH reveals a physical phenomenon for vibration focusing and energy storage