Showing 20 articles starting at article 681
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Offbeat: Computers and Math
Published 3D-printed revolving devices can sense how they are moving


Researchers created a system that enables makers to incorporate sensors directly into rotational mechanisms with only one pass in a 3D printer. This gives rotational mechanisms like gearboxes the ability to sense their angular position, rotation speed, and direction of rotation.
Published Major advance in super-resolution fluorescence microscopy


Pushing the MINFLUX technique to higher spatial and temporal precision allows protein dynamics to be observed under physiological conditions.
Published Resilient bug-sized robots keep flying even after wing damage


Researchers have developed resilient artificial muscles that can enable insect-scale aerial robots to effectively recover flight performance after suffering severe damage.
Published Researchers control the degree of twist in nanostructured particles


Micron-sized 'bow ties,' self-assembled from nanoparticles, form a variety of different curling shapes that can be precisely controlled, a research team has shown.
Published Mix-and-match kit could enable astronauts to build a menagerie of lunar exploration bots


The Walking Oligomeric Robotic Mobility System, or WORMS, is a reconfigurable, modular, multiagent robotics architecture for extreme lunar terrain mobility. The system could be used to assemble autonomous worm-like parts into larger biomimetic robots that could explore lava tubes, steep slopes, and the moon's permanently shadowed regions.
Published Game-changing high-performance semiconductor material could help slash heat emissions


Researchers have engineered a material with the potential to dramatically cut the amount of heat power plants release into the atmosphere.
Published Scientists transform algae into unique functional perovskites with tunable properties


Scientists have transformed single-cell algae into functional perovskite materials. The team has converted mineral shells of algae into lead halide perovskites with tunable physical properties. The new perovskites have unique nano-architectures unachievable by conventional synthetic production. The method can be applied to the mass production of perovskites with tunable structural and electro-optical properties from single-celled organisms.
Published Are piezoelectrics good for generating electricity? Perhaps, but we must decide how to evaluate them


A 'best practice' protocol for researchers developing piezoelectric materials has been developed by scientists. The protocol was developed by an international team led by physicists in response to findings that experimental reports lack consistency. The researchers made the shocking discovery that nine out of 10 scientific papers miss experimental information that is crucial to ensure the reproducibility of the reported work.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Microscopy: Highest resolution in three dimensions


Researchers have developed a super-resolution microscopy method for the rapid differentiation of molecular structures in 3D.
Published Some stirring required: Fluid mixing enables scalable manufacturing of soft polymer structures


Researchers have developed and demonstrated an efficient and scalable technique that allows them to manufacture soft polymer materials in a dozen different structures, or 'morphologies,' from ribbons and nanoscale sheets to rods and branched particles. The technique allows users to finely tune the morphology of the materials at the micro- and nano-scale.
Published Knots smaller than human hair make materials unusually tough


A micro-architected material made from tiny knots proves tougher and more durable than unknotted counterparts.
Published Virtual reality games can be used as a tool in personnel assessment


Fast gamers are more intelligent: Intelligence can be predicted through virtual reality games.
Published In the world's smallest ball game, scientists throw and catch single atoms using light


Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.
Published Researchers unveil smart contact lens, capable of implementing AR-based navigation


A research team has introduced core technology for smart contact lenses that can implement AR-based navigation through a 3D printing process.
Published New kind of transistor could shrink communications devices on smartphones


One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team has now demonstrated a reconfigurable transistor using that material. Their work paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.
Published Viable superconducting material created, say researchers


Researchers report the creation of a superconducting material at both a temperature and pressure low enough for practical applications. In a new paper, the researchers describe a nitrogen-doped lutetium hydride that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.
Published New breakthrough enables perfectly secure digital communications


Researchers have achieved a breakthrough to enable 'perfectly secure' hidden communications for the first time. The method uses new advances in information theory methods to conceal one piece of content inside another in a way that cannot be detected. This may have strong implications for information security, besides further applications in data compression and storage.
Published Graphene quantum dots show promise as novel magnetic field sensors


Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.
Published Can artificial intelligence help find life on Mars or icy worlds?


Researchers have mapped the sparse life hidden away in salt domes, rocks and crystals at Salar de Pajonales at the boundary of the Chilean Atacama Desert and Altiplano. Then they trained a machine learning model to recognize the patterns and rules associated with their distributions so it could learn to predict and find those same distributions in data on which it was not trained. In this case, by combining statistical ecology with AI/ML, the scientists could locate and detect biosignatures up to 87.5 percent of the time and decrease the area needed for search by up to 97 percent.