Showing 20 articles starting at article 501
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Offbeat: Earth and Climate
Published Discovery in nanomachines within living organisms -- cytochromes P450 (CYP450s) unleashed as living soft robots



A new study suggests that Cytochromes P450 (CYP450s) enzymes can sense and respond to stimuli, acting like soft robots in living systems.
Published Single drop of ethanol to revolutionize nanosensor manufacture


Engineers have developed a breakthrough technique to make the processing of nanosensors cheaper, greener and more effective by using a single drop of ethanol to replace heat processing of nanoparticle networks, allowing a wider range of materials to be used to make these sensors.
Published Unleashing a new era of color tunable nano-devices -- smallest ever light source with switchable colors formed


New research has achieved a significant breakthrough in color switching for nanocrystals, unlocking exciting possibilities for a simple, energy efficient display design and for tunable light sources needed in numerous technologies. The discovery also has potential applications in sensitive sensors for various substances, including biological and neuroscience uses, as well as advancements in quantum communication technologies. This nanomaterial breakthrough holds the promise of inspiring exciting innovations in the future.
Published Nanorings: New building blocks for chemistry


Sandwich compounds are special chemical compounds used as basic building blocks in organometallic chemistry. So far, their structure has always been linear. Recently, researchers made stacked sandwich complexes form a nano-sized ring. Physical and other properties of these cyclocene structures will now be further investigated.
Published Cracking in lithium-ion batteries speeds up electric vehicle charging


Rather than being solely detrimental, cracks in the positive electrode of lithium-ion batteries reduce battery charge time, research shows. This runs counter to the view of many electric vehicle manufacturers, who try to minimize cracking because it decreases battery longevity.
Published Energy-storing supercapacitor from cement, water, black carbon


Engineers have created a 'supercapacitor' made of ancient, abundant materials, that can store large amounts of energy. Made of just cement, water, and carbon black (which resembles powdered charcoal), the device could form the basis for inexpensive systems that store intermittently renewable energy, such as solar or wind energy.
Published Sun 'umbrella' tethered to asteroid might help mitigate climate change



Earth is rapidly warming and scientists are developing a variety of approaches to reduce the effects of climate change. An astronomer has proposed a novel approach -- a solar shield to reduce the amount of sunlight hitting Earth, combined with a tethered, captured asteroid as a counterweight. Engineering studies using this approach could start now to create a workable design that could mitigate climate change within decades.
Published 'Time-traveling' pathogens in melting permafrost pose likely risk to environment



Ancient pathogens that escape from melting permafrost have real potential to damage microbial communities and might potentially threaten human health, according to a new study.
Published Materials science: How molecular entanglements determine the structure of polymers


The structure of semi-crystalline polymers largely depends on how strongly their molecular chains are entangled. Following numerous experiments, researchers developed a new model to predict the microscopic structure of the materials as well as their properties. Polymers are long-chain molecules. Semi-crystalline polymers are a mixture of solid and liquid elements. They are often used in plastics and packaging materials.
Published Towards silver cluster-assembled materials for environmental monitoring


Silver cluster-assembled materials (SCAMs) are emerging light-emitting materials with molecular designability and unique properties. However, due to their dissimilar structural architecture in different solvents, their widespread application remains limited. Now, researchers have developed two new SCAMs that exhibit excellent fluorescence and high sensitivity to Fe3+ ions in aqueous solutions, indicating their potential for environmental monitoring and assessment.
Published Bacteria as Blacksmiths



A hot bath is a place to relax. For scientists, it is also where molecules or tiny building blocks meet to form materials. Researchers take it to the next level and use the energy of swimming bacteria to forge materials. A recent study shows us how this works and the potential sustainability benefits that may arise from this innovative approach.
Published New technology promises rapid and reliable development of new diagnostic tests


Researchers have developed a new approach for designing molecular ON-OFF switches based on proteins which can be used in a multitude of biotechnological, biomedical and bioengineering applications.
Published A novel approach for balancing properties in composite materials


Scientists are developing an approach to enhance multifunctionality and structural properties simultaneously by embedding patterned nanostructures in composite materials, which could result in more efficient energy systems enhancing everyday life.
Published Egg 'signatures' will allow drongos to identify cuckoo 'forgeries' almost every time, study finds



Egg 'signatures' will allow drongos to identify cuckoo 'forgeries' almost every time, study finds. African cuckoos may have met their match with the fork-tailed drongo, which scientists predict can detect and reject cuckoo eggs from their nest on almost every occasion, despite them on average looking almost identical to drongo eggs.
Published Towards artificial photosynthesis with engineering of protein crystals in bacteria


In-cell engineering can be a powerful tool for synthesizing functional protein crystals with promising catalytic properties. Using genetically modified bacteria as an environmentally friendly synthesis platform, the researchers produced hybrid solid catalysts for artificial photosynthesis. These catalysts exhibit high activity, stability, and durability, highlighting the potential of the proposed innovative approach.
Published Washable, transparent, and flexible OLED with MXene nanotechnology?


Transparent and flexible displays, which have received a lot of attention in various fields including automobile displays, bio-healthcare, military, and fashion, are in fact known to break easily when experiencing small deformations. To solve this problem, active research is being conducted on many transparent and flexible conductive materials such as carbon nanotubes, graphene, silver nanowires, and conductive polymers.
Published Detection of bacteria and viruses with fluorescent nanotubes


The new carbon nanotube sensor design resembles a molecular toolbox that can be used to quickly assemble sensors for a variety of purposes -- for instance for detecting bacteria and viruses.
Published Researchers put a new twist on graphite



Researchers report that it is possible to imbue graphite -- the bulk, 3D material found in No. 2 pencils -- with physical properties similar to graphite's 2D counterpart, graphene. Not only was this breakthrough unexpected, the team also believes its approach could be used to test whether similar types of bulk materials can also take on 2D-like properties. If so, 2D sheets won't be the only source for scientists to fuel technological revolutions. Bulk, 3D materials could be just as useful.
Published Researchers achieve historic milestone in energy capacity of supercapacitors



In a new landmark chemistry study, researchers describe how they have achieved the highest level of energy storage -- also known as capacitance -- in a supercapacitor ever recorded.
Published It's sewage, not fertilizer fueling nitrogen surge in Florida's Indian River Lagoon



Fertilizer restrictions along Florida's 156-mile-long Indian River Lagoon were intended to reduce nutrient inputs from urban and agricultural land uses. The hope was that water quality would improve by reducing the nitrogen load. While these restrictions were well-intended, a study finds fertilizer use is not the root cause of the lagoon's environmental issues. It's sewage. For decades, fertilizer use was implicated for about 71 percent of the lagoon's environmental impairments. In fact, current estimates show 79 percent of nitrogen loading is from septic systems; 21 percent is from residential fertilizer use.