Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Engineering: Nanotechnology, Offbeat: Paleontology and Archeology
Published Controlling ion transport for a blue energy future



Researchers probed the transit of cations across a nanopore membrane for the generation of osmotic energy. The team controlled the passage of cations across the membrane using a voltage applied to a gate electrode. This control allowed the cation-selective transport to be tuned from essentially zero to complete cation selectivity. The findings are expected to support the application of blue energy solutions for sustainable energy alternatives worldwide.
Published Origins of 'Welsh dragons' finally exposed by experts



A large fossil discovery has helped shed light on the history of dinosaurs in Wales.
Published Local bright spot among melting glaciers: 2000 km of Antarctic ice-covered coastline has been stable for 85 years



A whaler's forgotten aerial photos from 1937 have given researchers the most detailed picture of the ice evolution in East Antarctica to date. The results show that the ice has remained stable and even grown slightly over almost a century, though scientists observe early signs of weakening. The research offers new insights that enhance predictions of ice changes and sea level rise.
Published How killifish embryos use suspended animation to survive over 8 months of drought



The African turquoise killifish lives in ephemeral ponds in Zimbabwe and Mozambique. To survive the annual dry season, the fish's embryos enter a state of extreme suspended animation or 'diapause' for approximately 8 months. Now, researchers have uncovered the mechanisms that enabled the killifish to evolve this extreme survival state.
Published Florida fossil porcupine solves a prickly dilemma 10-million years in the making



An exceptionally rare fossilized porcupine skeleton discovered in Florida has allowed researchers to trace the evolutionary history for one of North America's rarest mammals.
Published Entomologist sheds light on 250-year-old mystery of the German cockroach



Entomologists have solved the 250-year-old origin puzzle of the most prevalent indoor urban pest insect on the planet: the German cockroach. The team's research findings, representing the genomic analyses of over 280 specimens from 17 countries and six continents, show that this species evolved some 2,100 years ago from an outdoor-living species in Asia.
Published Controlling water, transforming greenhouse gases



Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.
Published How a tiny device could lead to big physics discoveries and better lasers



Researchers have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.
Published Wearable ultrasound patch enables continuous, non-invasive monitoring of cerebral blood flow



Engineers have developed a wearable ultrasound patch that can offer continuous, non-invasive monitoring of blood flow in the brain. The soft and stretchy patch can be comfortably worn on the temple to provide three-dimensional data on cerebral blood flow--a first in wearable technology.
Published Under extreme impacts, metals get stronger when heated, study finds



Scientists have discovered that when metal is struck by an object moving at a super high velocity, the heat makes the metal stronger. The finding could lead to new approaches to designing materials for extreme environments, such as shields that protect spacecraft or equipment for high-speed manufacturing.
Published Strings that can vibrate forever (kind of)



Researchers have engineered string-like resonators capable of vibrating longer at ambient temperature than any previously known solid-state object -- approaching what is currently only achievable near absolute zero temperatures. Their study pushes the edge of nanotechnology and machine learning to make some of the world's most sensitive mechanical sensors.
Published Recycling carbon dioxide into household chemicals



Scientists report a family of tin-based catalysts that efficiently converts CO2 into ethanol, acetic acid and formic acid. These liquid hydrocarbons are among the most produced chemicals in the U.S and are found in many commercial products.
Published Researchers discover hidden step in dinosaur feather evolution



Scientists discover 'zoned development' in dinosaur skin, with zones of reptile-style scales and zones of bird-like skin with feathers. A new dinosaur skin fossil has been found to be composed of silica -- the same as glass.
Published Powering wearable devices with high-performing carbon nanotube yarns



Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.
Published Enhancing superconductivity of graphene-calcium superconductors



Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.
Published Blueprints of self-assembly



Scientists have taken a step closer to replicating nature's processes of self-assembly. The study describes the synthetic construction of a tiny, self-assembled crystal known as a 'pyrochlore,' which bears unique optical properties. The advance provides a steppingstone to the eventual construction of sophisticated, self-assembling devices at the nanoscale -- roughly the size of a single virus.
Published Expanding on the fundamental principles of liquid movement



We are living in a world surrounded by liquid and flow, and understanding the principles that govern its movement is vital in our high-tech world. Through mathematical modeling and experimentation, researchers have expanded on Tanner's Law -- a law in fluid dynamics that describes how non-volatile liquids move across surfaces -- to cover a wider range of volatile liquids. These findings have the potential to play a role in various liquid-based industries such as electronics cooling.
Published Ion irradiation offers promise for 2D material probing



Two-dimensional materials such as graphene promise to form the basis of incredibly small and fast technologies, but this requires a detailed understanding of their electronic properties. New research demonstrates that fast electronic processes can be probed by irradiating the materials with ions first.
Published Diamond glitter: A play of colors with artificial DNA crystals



Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.
Published Ancient arachnid from coal forests of America stands out for its spiny legs



The spiny legged 308-million-year-old arachnid Douglassarachne acanthopoda was discovered the famous Mazon Creek locality.