Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers visualize quantum effects in electron waves      (via sciencedaily.com)     Original source 

One of the most fundamental interactions in physics is that of electrons and light. In an experiment, scientists have now managed to observe what is known as the Kapitza-Dirac effect for the first time in full temporal resolution. This effect was first postulated over 90 years ago, but only now are its finest details coming to light.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Water-based paints: Less stinky, but some still contain potentially hazardous chemicals      (via sciencedaily.com)     Original source 

Choosing paint for your home brings a lot of options: What kind of paint, what type of finish and what color? Water-based paints have emerged as 'greener' and less smelly than solvent-based options. And they are often advertised as containing little-to-no volatile organic compounds (VOCs). But, according to new research, some of these paints do contain compounds that are considered VOCs, along with other chemicals of emerging concern.

Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Sunrise to sunset, new window coating blocks heat -- not view      (via sciencedaily.com)     Original source 

Windows welcome light into interior spaces, but they also bring in unwanted heat. A new window coating blocks heat-generating ultraviolet and infrared light and lets through visible light, regardless of the sun's angle. The coating can be incorporated onto existing windows or automobiles and can reduce air-conditioning cooling costs by more than one-third in hot climates.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

100 kilometers of quantum-encrypted transfer      (via sciencedaily.com)     Original source 

Researchers have taken a big step towards securing information against hacking. They have succeeded in using quantum encryption to securely transfer information 100 kilometers via fiber optic cable -- roughly equivalent to the distance between Oxford and London.

Chemistry: Biochemistry Energy: Technology Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers discover dual topological phases in an intrinsic monolayer crystal      (via sciencedaily.com)     Original source 

An international team working with single-atom thick crystals found TaIrTe4's transition between the two distinct topological states of insulation and conduction. The material exhibited zero electrical conductivity within its interior, while its boundaries remain conductive. The team's investigation determined that the two topological states stem from disparate origins. The novel properties can serve as a promising platform for exploring exotic quantum phases and electromagnetism.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Engineers 'symphonize' cleaner ammonia production      (via sciencedaily.com)     Original source 

Among the many chemicals we use every day, ammonia is one of the worst for the atmosphere. The nitrogen-based chemical used in fertilizer, dyes, explosives and many other products ranks second only to cement in terms of carbon emissions, due to the high temperatures and energy needed to manufacture it. But by improving on a well-known electrochemical reaction and orchestrating a 'symphony' of lithium, nitrogen and hydrogen atoms, engineers have developed a new ammonia production process that meets several green targets.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnetic avalanche triggered by quantum effects      (via sciencedaily.com)     Original source 

Scientists have shown that Barkhausen noise can be produced not only through traditional, or classical means, but through quantum mechanical effects. The research represents an advance in fundamental physics and could one day have applications in creating quantum sensors and other electronic devices.

Chemistry: General Chemistry: Inorganic Chemistry Computer Science: General Physics: Optics
Published

More efficient TVs, screens and lighting      (via sciencedaily.com)     Original source 

New multidisciplinary research could lead to more efficient televisions, computer screens and lighting.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A new type of cooling for quantum simulators      (via sciencedaily.com)     Original source 

Quantum simulators are quantum systems that can be controlled exceptionally well. They can be used to indirectly learn something about other quantum systems, which cannot be experimented on so easily. Therefore, quantum simulators play an important role in unraveling the big questions of quantum physics. However, they are limited by temperature: They only work well, when they are extremely cold. Scientists have now developed a method to cool quantum simulators even more than before: by splitting a Bose-Einstein-condensate in half, in a very special way.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Bullseye! Accurately centering quantum dots within photonic chips      (via sciencedaily.com)     Original source 

Researchers have now developed standards and calibrations for optical microscopes that allow quantum dots to be aligned with the center of a photonic component to within an error of 10 to 20 nanometers (about one-thousandth the thickness of a sheet of paper). Such alignment is critical for chip-scale devices that employ the radiation emitted by quantum dots to store and transmit quantum information.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

New method to measure entropy production on the nanoscale      (via sciencedaily.com)     Original source 

Entropy, the amount of molecular disorder, is produced in several systems but cannot be measured directly. A new equation sheds new light on how entropy is produced on a very short time scale in laser excited materials.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

Micro-Lisa! Making a mark with novel nano-scale laser writing      (via sciencedaily.com)     Original source 

High-power lasers are often used to modify polymer surfaces to make high-tech biomedical products, electronics and data storage components. Now researchers have discovered a light-responsive, inexpensive sulfur-derived polymer is receptive to low power, visible light lasers -- promising a more affordable and safer production method in nanotech, chemical science and patterning surfaces in biological applications.

Geoscience: Earth Science Offbeat: Earth and Climate Offbeat: General Offbeat: Space Physics: General Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

Scientists on the hunt for evidence of quantum gravity's existence at the South Pole      (via sciencedaily.com)     Original source 

An Antarctic large-scale experiment is striving to find out if gravity also exists at the quantum level. An extraordinary particle able to travel undisturbed through space seems to hold the answer.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: Optics
Published

Research lights up process for turning CO2 into sustainable fuel      (via sciencedaily.com)     Original source 

Researchers have successfully transformed CO2 into methanol by shining sunlight on single atoms of copper deposited on a light-activated material, a discovery that paves the way for creating new green fuels.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists deliver quantum algorithm to develop new materials and chemistry      (via sciencedaily.com)     Original source 

Scientists published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent article, expected to become a powerful tool to investigate the physical properties in electronic systems.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The world is one step closer to secure quantum communication on a global scale      (via sciencedaily.com)     Original source 

Researchers have brought together two Nobel prize-winning research concepts to advance the field of quantum communication. Scientists can now efficiently produce nearly perfect entangled photon pairs from quantum dot sources.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum interference could lead to smaller, faster, and more energy-efficient transistors      (via sciencedaily.com)     Original source 

Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Major environmental benefits recycling gold with biodiesel      (via sciencedaily.com)     Original source 

Researchers have developed an environmentally friendly method for recycling and purifying metals. Using gold earrings from a pawnshop in Gothenburg and biodiesel from the nearest filling station, the discovery could change an industry that is currently dependent on large amounts of fossil oil.