Chemistry: Thermodynamics Computer Science: General Computer Science: Virtual Reality (VR) Energy: Technology Physics: General
Published

AI method radically speeds predictions of materials' thermal properties      (via sciencedaily.com)     Original source 

Researchers developed a machine-learning framework that can predict a key property of heat dispersion in materials that is up to 1,000 times faster than other AI methods, and could enable scientists to improve the efficiency of power generation systems and microelectronics.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Atomic 'GPS' elucidates movement during ultrafast material transitions      (via sciencedaily.com)     Original source 

Scientists have created the first-ever atomic movies showing how atoms rearrange locally within a quantum material as it transitions from an insulator to a metal. With the help of these movies, the researchers discovered a new material phase that settles a years-long scientific debate and could facilitate the design of new transitioning materials with commercial applications.

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Nuclear Energy: Technology Physics: General Physics: Optics
Published

Fresh light on the path to net zero      (via sciencedaily.com)     Original source 

Researchers have used magnetic fields to reveal the mystery of how light particles split. Scientists are closer to giving the next generation of solar cells a powerful boost by integrating a process that could make the technology more efficient by breaking particles of light photons into small chunks.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Kink state' control may provide pathway to quantum electronics      (via sciencedaily.com)     Original source 

The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum sensor for the atomic world      (via sciencedaily.com)     Original source 

In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.

Chemistry: Biochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nonreciprocal interactions go nonlinear      (via sciencedaily.com)     Original source 

Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so called non-conservative interactions.

Chemistry: Thermodynamics Physics: Optics
Published

Engineer develops technique that enhances thermal imaging and infrared thermography for police, medical, military use      (via sciencedaily.com)     Original source 

A new method to measure the continuous spectrum of light is set to improve thermal imaging and infrared thermography.

Chemistry: Thermodynamics Computer Science: General Energy: Technology Engineering: Robotics Research
Published

Next-gen cooling system to help data centers become more energy efficient      (via sciencedaily.com)     Original source 

Artificial intelligence (AI) is hot right now. Also hot: the data centers that power the technology. And keeping those centers cool requires a tremendous amount of energy. The problem is only going to grow as high-powered AI-based computers and devices become commonplace. That's why researchers are devising a new type of cooling system that promises to dramatically reduce energy demands.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Spin qubits go trampolining      (via sciencedaily.com)     Original source 

Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Researchers develop more environmentally friendly and cost-effective method for soil remediation      (via sciencedaily.com)     Original source 

Chemists have developed a rapid electrothermal mineralization (REM) process, which in seconds can remediate the accumulation of synthetic chemicals that can contaminate soil and the environment.

Chemistry: General Chemistry: Thermodynamics Energy: Alternative Fuels Physics: General
Published

3D-printed microstructure forest facilitates solar steam generator desalination      (via sciencedaily.com)     Original source 

Faced with the world's impending freshwater scarcity, researchers turned to solar steam generators, which are emerging as a promising device for seawater desalination. The team sought design inspiration from trees and harnessed the potential of 3D printing. They present technology for producing efficient SSGs for desalination and introduces a novel method for printing functional nanocomposites for multi-jet fusion. Their SSGs were inspired by plant transpiration and are composed of miniature tree-shaped microstructures, forming an efficient, heat-distributing forest.

Chemistry: Thermodynamics
Published

Aluminum scandium nitride films: Enabling next-gen ferroelectric memory devices      (via sciencedaily.com)     Original source 

Aluminum scandium nitride thin films could pave the way for the next generation of ferroelectric memory devices, according to a new study. Compared to existing ferroelectric materials, these films maintain their ferroelectric properties and crystal structure even after heat treatment at temperatures up to 600 C in both hydrogen and argon atmospheres. This high stability makes them ideal for high-temperature manufacturing processes under the H2-included atmosphere used in fabricating advanced memory devices.

Chemistry: General Chemistry: Thermodynamics Physics: Optics
Published

3D printing of light-activated hydrogel actuators      (via sciencedaily.com)     Original source 

An international team of researchers has embedded gold nanorods in hydrogels that can be processed through 3D printing to create structures that contract when exposed to light -- and expand again when the light is removed. Because this expansion and contraction can be performed repeatedly, the 3D-printed structures can serve as remotely controlled actuators.

Chemistry: Biochemistry Chemistry: General Chemistry: Thermodynamics Engineering: Nanotechnology Physics: Optics
Published

New technique pinpoints nanoscale 'hot spots' in electronics to improve their longevity      (via sciencedaily.com)     Original source 

Researchers engineered a new technique to identify at the nanoscale level what components are overheating in electronics and causing their performance to fail.

Physics: General Physics: Quantum Physics
Published

Powerful new particle accelerator a step closer with muon-marshalling technology      (via sciencedaily.com)     Original source 

New experimental results show particles called muons can be corralled into beams suitable for high-energy collisions, paving the way for new physics.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists develop new theory describing the energy landscape formed when quantum particles gather together      (via sciencedaily.com)     Original source 

An international team of physicists has proven new theorems in quantum mechanics that describe the 'energy landscapes' of collections of quantum particles. Their work addresses decades-old questions, opening up new routes to make computer simulation of materials much more accurate. This, in turn, may help scientists design a suite of materials that could revolutionize green technologies.

Computer Science: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Paving the way to extremely fast, compact computer memory      (via sciencedaily.com)     Original source 

Researchers have demonstrated that the layered multiferroic material nickel iodide (NiI2) may be the best candidate yet for devices such as magnetic computer memory that are extremely fast and compact. Specifically, they found that NiI2 has greater magnetoelectric coupling than any known material of its kind.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Capturing carbon with energy-efficient sodium carbonate-nanocarbon hybrid material      (via sciencedaily.com)     Original source 

Carbon capture is a promising approach for mitigating carbon dioxide (CO2) emissions. Different materials have been used to capture CO2 from industrial exhaust gases. Scientists developed hybrid CO2 capture materials containing sodium carbonate and nanocarbon prepared at different temperatures, tested their performance, and identified the optimal calcination temperature condition. They found that the hybrid material exhibits and maintains high CO2 capture capacity for multiple regeneration cycles at a lower temperature, making it cost- and energy-effective.

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

Breakthrough in quantum microscopy: Researchers are making electrons visible in slow motion      (via sciencedaily.com)     Original source 

Physicists are developing quantum microscopy which enables them for the first time to record the movement of electrons at the atomic level with both extremely high spatial and temporal resolution. Their method has the potential to enable scientists to develop materials in a much more targeted way than before.