Showing 20 articles starting at article 521

< Previous 20 articles        Next 20 articles >

Categories: Energy: Alternative Fuels, Physics: Quantum Physics

Return to the site home page

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New technique in error-prone quantum computing makes classical computers sweat      (via sciencedaily.com)     Original source 

Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Physics: Optics
Published

New material transforms light, creating new possibilities for sensors      (via sciencedaily.com)     Original source 

A new class of materials that can absorb low energy light and transform it into higher energy light might lead to more efficient solar panels, more accurate medical imaging and better night vision goggles.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough: Scientists develop artificial molecules that behave like real ones      (via sciencedaily.com)     Original source 

Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Schrödinger's cat makes better qubits      (via sciencedaily.com)     Original source 

Drawing from Schrodinger's cat thought experiment, scientists have built a 'critical cat code' qubit that uses bosons to store and process information in a way that is more reliable and resistant to errors than previous qubit designs.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

Physicists discover an exotic material made of bosons      (via sciencedaily.com)     Original source 

Take a lattice -- a flat section of a grid of uniform cells, like a window screen or a honeycomb -- and lay another, similar lattice above it. But instead of trying to line up the edges or the cells of both lattices, give the top grid a twist so that you can see portions of the lower one through it. This new, third pattern is a moiré, and it's between this type of overlapping arrangement of lattices of tungsten diselenide and tungsten disulfide where physicists found some interesting material behaviors.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Calculation shows why heavy quarks get caught up in the flow      (via sciencedaily.com)     Original source 

Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New superconducting diode could improve performance of quantum computers and artificial intelligence      (via sciencedaily.com)     Original source 

A team has developed a more energy-efficient, tunable superconducting diode -- a promising component for future electronic devices -- that could help scale up quantum computers for industry and improve artificial intelligence systems.

Energy: Alternative Fuels Environmental: General Space: Exploration Space: General Space: The Solar System
Published

Proposed design could double the efficiency of lightweight solar cells for space-based applications      (via sciencedaily.com)     Original source 

When it comes to supplying energy for space exploration and settlements, commonly available solar cells made of silicon or gallium arsenide are still too heavy to be feasibly transported by rocket. To address this challenge, a wide variety of lightweight alternatives are being explored, including solar cells made of a thin layer of molybdenum selenide, which fall into the broader category of 2D transition metal dichalcogenide (2D TMDC) solar cells. Researchers propose a device design that can take the efficiencies of 2D TMDC devices from 5%, as has already been demonstrated, to 12%.

Chemistry: Biochemistry Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues
Published

Record 19.31% efficiency with organic solar cells      (via sciencedaily.com)     Original source 

Researchers have achieved a breakthrough power-conversion efficiency (PCE) of 19.31% with organic solar cells (OSCs), also known as polymer solar cells. This remarkable binary OSC efficiency will help enhance applications of these advanced solar energy devices.

Chemistry: Inorganic Chemistry Mathematics: Modeling Physics: General Physics: Quantum Physics
Published

Finally solved! The great mystery of quantized vortex motion      (via sciencedaily.com)     Original source 

Scientists investigated numerically the interaction between a quantized vortex and a normal-fluid. Based on the experimental results, researchers decided the most consistent of several theoretical models. They found that a model that accounts for changes in the normal-fluid and incorporates more theoretically accurate mutual friction is the most compatible with the experimental results.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

The 'breath' between atoms -- a new building block for quantum technology      (via sciencedaily.com)     Original source 

Researchers have discovered they can detect atomic 'breathing,' or the mechanical vibration between two layers of atoms, by observing the type of light those atoms emitted when stimulated by a laser. The sound of this atomic 'breath' could help researchers encode and transmit quantum information.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First X-ray of a single atom      (via sciencedaily.com)     Original source 

Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.

Chemistry: Biochemistry Chemistry: General Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

A nanocrystal shines on and off indefinitely      (via sciencedaily.com)     Original source 

Optical probes have led to numerous breakthroughs in applications like optical memory, nanopatterning, and bioimaging, but existing options have limited lifespans and will eventually 'photobleach.' New work demonstrates a promising, longer-lasting alternative: ultra-photostable avalanching nanoparticles that can turn on and off indefinitely in response to near-infrared light from simple lasers.

Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water
Published

New catalyst lowers cost for producing environmentally sustainable hydrogen from water      (via sciencedaily.com)     Original source 

A team has developed a new catalyst composed of elements abundant in the Earth. It could make possible the low-cost and energy-efficient production of hydrogen for use in transportation and industrial applications.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Symmetry breaking by ultrashort light pulses opens new quantum pathways for coherent phonons      (via sciencedaily.com)     Original source 

Researchers have demonstrated a novel concept for exciting and probing coherent phonons in crystals of a transiently broken symmetry. The key of this concept lies in reducing the symmetry of a crystal by appropriate optical excitation, as has been shown with the prototypical crystalline semimetal bismuth (Bi).

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

The next generation of solar energy collectors could be rocks      (via sciencedaily.com)     Original source 

The next generation of sustainable energy technology might be built from some low-tech materials: rocks and the sun. Using a new approach known as concentrated solar power, heat from the sun is stored then used to dry foods or create electricity. A team has found that certain soapstone and granite samples from Tanzania are well suited for storing this solar heat, featuring high energy densities and stability even at high temperatures.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

'A blessing in disguise!' Physics turning bad into good      (via sciencedaily.com)     Original source 

Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter's properties or change its form and be converted into thermal energy. Upon reaching a metallic material's surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call 'optical loss.' Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research.

Chemistry: Biochemistry Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Environmental: General
Published

Hydrogen battery: Storing hydrogen in coal may help power clean energy economy      (via sciencedaily.com)     Original source 

The quest to develop hydrogen as a clean energy source that could curb our dependence on fossil fuels may lead to an unexpected place -- coal. Scientists have found that coal may represent a potential way to store hydrogen gas, much like batteries store energy for future use, addressing a major hurdle in developing a clean energy supply chain.