Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Physics: Quantum Physics
Published Researchers engineer AI path to prevent power outages



Researchers developed an artificial intelligence (AI) model that could help electrical grids prevent power outages by automatically rerouting electricity in milliseconds. The approach is an early example of 'self-healing grid' technology, which uses AI to detect and repair problems such as outages autonomously and without human intervention when issues occur, such as storm-damaged power lines.
Published Novel blood-powered chip offers real-time health monitoring



Researchers develop the first-ever device powered by blood to measure blood electrical conductivity.
Published Promise green hydrogen may not always be fulfilled



Green hydrogen often, but certainly not always, leads to CO2 gains.
Published New NOvA results add to mystery of neutrinos



The international collaboration presented their first results with new data in four years, featuring a new low-energy sample of electron neutrinos and a dataset doubled in size.
Published Breakthrough may clear major hurdle for quantum computers



The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.
Published New material puts eco-friendly methanol conversion within reach



Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.
Published Quantum entanglement measures Earth rotation



Researchers carried out a pioneering experiment where they measured the effect of the rotation of Earth on quantum entangled photons. The work represents a significant achievement that pushes the boundaries of rotation sensitivity in entanglement-based sensors, potentially setting the stage for further exploration at the intersection between quantum mechanics and general relativity.
Published A liquid crystal source of photon pairs



Spontaneous parametric down-conversion (SPDC), as a source of entangled photons, is of great interest for quantum physics and quantum technology, but so far it could be only implemented in solids. Researchers have demonstrated, for the first time, SPDC in a liquid crystal. The results open a path to a new generation of quantum sources: efficient and electric-field tunable.
Published Pair plasmas found in deep space can now be generated in the lab



Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.
Published New dart launcher may be better way to inject animals with drugs



A new type of dart launcher has been developed as a safer and more cost-effective alternative to firearms or air guns to inject animals with drugs or tracking chips.
Published Quantum data assimilation: A quantum leap in weather prediction



Data assimilation is an important mathematical discipline in earth sciences, particularly in numerical weather prediction (NWP). However, conventional data assimilation methods require significant computational resources. To address this, researchers developed a novel method to solve data assimilation on quantum computers, significantly reducing the computation time. The findings of the study have the potential to advance NWP systems and will inspire practical applications of quantum computers for advancing data assimilation.
Published A 'liquid battery' advance



A team aims to improve options for renewable energy storage through work on an emerging technology -- liquids for hydrogen storage.
Published Quantum dots and metasurfaces: Deep connections in the nano world



A team has developed printable, highly efficient light-emitting metasurfaces.
Published Uncovering the nature of emergent magnetic monopoles



To understand the unique physical phenomena associated with the properties of magnetic hedgehogs and antihedgehogs, which behave as virtual magnetic monopoles and antimonopoles respectively, it is essential to study their intrinsic excitations. In a new study, researchers revealed the dynamical nature of collective excitation modes in hedgehog lattices in itinerant chiral magnets. Their findings serve as the foundation for studying the dynamics of emergent magnetic monopoles in magnets.
Published Algae offer real potential as a renewable electricity source



The need to transition away from fossil fuels to more sustainable energy production is critical. That's why a team of researchers is looking at a potential power source that not only produces no carbon emissions but removes carbon as it works: algae.
Published New technique could help build quantum computers of the future



Researchers have demonstrated a new method that could enable the large-scale manufacturing of optical qubits. The advance could bring us closer to a scalable quantum computer.
Published Semiconductor doping and electronic devices: Heating gallium nitride and magnesium forms superlattice



A study revealed that a simple thermal reaction of gallium nitride with metallic magnesium results in the formation of a distinctive superlattice structure. This represents the first time researchers have identified the insertion of 2D metal layers into a bulk semiconductor. By carefully observing materials through various cutting-edge characterization techniques, the researchers uncovered new insights into the process of semiconductor doping and elastic strain engineering.
Published Switching nanomagnets using infrared lasers



Physicists have calculated how suitable molecules can be stimulated by infrared light pulses to form tiny magnetic fields. If this is also successful in experiments, the principle could be used in quantum computer circuits.
Published 'Quantum optical antennas' provide more powerful measurements on the atomic level



A multi-institutional team has created atomic optical antennas in solids. The team used germanium vacancy centers in diamonds to create an optical energy enhancement of six orders of magnitude, a regime challenging to reach with conventional atomic antenna structures.
Published Perturbations simplify the study of 'super photons'



Thousands of particles of light can merge into a type of 'super photon' under suitable conditions. Physicists call such a state a photon Bose-Einstein condensate. Researchers have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access.