Showing 20 articles starting at article 421

< Previous 20 articles        Next 20 articles >

Categories: Engineering: Biometric, Physics: Quantum Physics

Return to the site home page

Chemistry: Inorganic Chemistry Energy: Technology Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Heterostructures support predictions of counterpropagating charged edge modes at the v=2/3 fractional quantum Hall state      (via sciencedaily.com)     Original source 

Researchers have tested models of edge conduction with a device built on top of the semiconductor heterostructure which consists of gold gates that come close together. Voltage is applied on the gates to direct the edge states through the middle of the point contact, where they are close enough that quantum tunneling can occur between the edge states on opposite sides the sample. Changes in the electrical current flowing through the device are used to test the theorists' predictions.

Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Let there be (controlled) light      (via sciencedaily.com) 

In the very near future, quantum computers are expected to revolutionize the way we compute, with new approaches to database searches, AI systems, simulations and more. But to achieve such novel quantum technology applications, photonic integrated circuits which can effectively control photonic quantum states -- the so-called qubits -- are needed. Physicists have made a breakthrough in this effort: for the first time, they demonstrated the controlled creation of single-photon emitters in silicon at the nanoscale.

Chemistry: Organic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Theory can sort order from chaos in complex quantum systems      (via sciencedaily.com) 

Theoretical chemists have developed a theory that can predict the threshold at which quantum dynamics switches from 'orderly' to 'random,' as shown through research using large-scale computations on photosynthesis models.

Computer Science: Quantum Computers Engineering: Graphene Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The quantum twisting microscope: A new lens on quantum materials      (via sciencedaily.com) 

One of the striking aspects of the quantum world is that a particle, say, an electron, is also a wave, meaning that it exists in many places at the same time. Researchers make use of this property to develop a new type of tool -- the quantum twisting microscope (QTM) -- that can create novel quantum materials while simultaneously gazing into the most fundamental quantum nature of their electrons.

Chemistry: Thermodynamics Physics: General Physics: Quantum Physics
Published

Physicists give the first law of thermodynamics a makeover      (via sciencedaily.com) 

Physicists at West Virginia University have made a breakthrough on an age-old limitation of the first law of thermodynamics.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum sensing technique reveals magnetic connections      (via sciencedaily.com) 

A research team demonstrates a new way to use quantum sensors to tease out relationships between microscopic magnetic fields.

Computer Science: Quantum Computers Energy: Nuclear Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Engineers discover a new way to control atomic nuclei as 'qubits'      (via sciencedaily.com) 

Researchers propose a new approach to making qubits, the basic units in quantum computing, and controlling them to read and write data. The method is based on measuring and controlling the spins of atomic nuclei, using beams of light from two lasers of slightly different colors.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Securing supply chains with quantum computing      (via sciencedaily.com) 

New research in quantum computing is moving science closer to being able to overcome supply-chain challenges and restore global security during future periods of unrest.

Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

When the light is neither 'on' nor 'off' in the nanoworld      (via sciencedaily.com) 

Scientists detect the quantum properties of collective optical-electronic oscillations on the nanoscale. The results could contribute to the development of novel computer chips.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers detail never-before-seen properties in a family of superconducting Kagome metals      (via sciencedaily.com) 

Researchers have used an innovative new strategy combining nuclear magnetic resonance imaging and a quantum modeling theory to describe the microscopic structure of Kagome superconductor RbV3Sb5 at 103 degrees Kelvin, which is equivalent to about 275 degrees below 0 degrees Fahrenheit.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists boost quantum signals while reducing noise      (via sciencedaily.com) 

Researchers have developed a special type of amplifier that uses a technique known as squeezing to amplify quantum signals by a factor of 100 while reducing the noise that is inherent in quantum systems by an order of magnitude. Their device is the first to demonstrate squeezing over a broad frequency bandwidth of 1.75 gigahertz, nearly two orders of magnitude higher than other architectures.

Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Distortion-free forms of structured light      (via sciencedaily.com) 

Research offers a new approach to studying complex light in complex systems, such as transporting classical and quantum light through optical fiber, underwater channels, living tissue and other highly aberrated systems.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists make major breakthrough in developing practical quantum computers that can solve big challenges of our time      (via sciencedaily.com) 

Researchers have demonstrated that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking connection speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Entangled atoms cross quantum network from one lab to another      (via sciencedaily.com) 

Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.

Computer Science: Quantum Computers Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers devise a new path toward 'quantum light'      (via sciencedaily.com) 

Researchers have theorized a new mechanism to generate high-energy 'quantum light', which could be used to investigate new properties of matter at the atomic scale.

Energy: Nuclear Physics: Quantum Physics
Published

Amplified search for new forces      (via sciencedaily.com) 

In the search for new forces and interactions beyond the Standard Model, an international team of researchers has now taken a good step forward. The researchers are using an amplification technique based on nuclear magnetic resonance. They use their experimental setup to study a particular exotic interaction between spins: a parity-violating interaction mediated by a new hypothetical exchange particle, called a Z' boson, which exists in addition to the Z boson mediating the weak interaction in the standard Model.

Energy: Nuclear Physics: Quantum Physics
Published

'Ghostly' neutrinos provide new path to study protons      (via sciencedaily.com) 

Scientists have discovered a new way to investigate the structure of protons using neutrinos, known as 'ghost particles.'

Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers take a step toward novel quantum simulators      (via sciencedaily.com) 

If scaled up successfully, the team's new system could help answer questions about certain kinds of superconductors and other unusual states of matter.