Showing 20 articles starting at article 781
< Previous 20 articles Next 20 articles >
Categories: Physics: Quantum Physics, Space: Structures and Features
Published M87 in 3D: New view of galaxy helps pin down mass of the black hole at its core



From Earth, giant elliptical galaxies resemble highly symmetric blobs, but what's their real 3D structure? Astronomers have assembled one of the first 3D views of a giant elliptical galaxy, M87, whose central supermassive black hole has already been imaged by the Event Horizon Telescope. M87 turns out to be triaxial, like a potato. The revised view provides a more precise measure of the mass of the central black hole: 5.37 billion solar masses.
Published James Webb Space Telescope images challenge theories of how universe evolved



Astronomers find that six of the earliest and most massive galaxy candidates observed by the James Webb Space Telescope so far appear to have converted nearly 100% of their available gas into stars, a finding at odds with the reigning model of cosmology.
Published Researchers discover tiny galaxy with big star power using James Webb telescope



Using new observations from the James Webb Space Telescope, astronomers looked more than 13 billion years into the past to discover a unique, minuscule galaxy that could help astronomers learn more about galaxies that were present shortly after the Big Bang.
Published How did Earth get its water?



Our planet's water could have originated from interactions between the hydrogen-rich atmospheres and magma oceans of the planetary embryos that comprised Earth's formative years.
Published Backscattering protection in integrated photonics is impossible with existing technologies



Researchers raise fundamental questions about the proposed value of topological protection against backscattering in integrated photonics.
Published New findings that map the universe's cosmic growth support Einstein's theory of gravity



Research by the Atacama Cosmology Telescope collaboration has culminated in a groundbreaking new image that reveals the most detailed map of dark matter distributed across a quarter of the entire sky, reaching deep into the cosmos. Findings provide further support to Einstein's theory of general relativity, which has been the foundation of the standard model of cosmology for more than a century, and offers new methods to demystify dark matter.
Published Better understanding the physics of our universe



Researchers from around the world have sought to answer important questions about the most basic laws of physics that govern our universe. Their experiment, the Majorana Demonstrator, has helped to push the horizons on research concerning one of the fundamental building blocks of the universe: neutrinos.
Published Scientists map gusty winds in a far-off neutron star system



Astronomers have mapped the 'disk winds' associated with the accretion disk around Hercules X-1, a system in which a neutron star is drawing material away from a sun-like star. The findings may offer clues to how supermassive black holes shape entire galaxies.
Published Navigating the cosmos with CHARA Array



New instruments and plans for a seventh telescope at Georgia State's CHARA Array will allow scientists to see the stars in greater detail than ever before. The update comes after a group of international scientists gathered in Atlanta to take part in the 2023 CHARA Science Meeting to share the latest developments in high-resolution astronomical imaging using the CHARA Array.
Published Webb reveals never-before-seen details in Cassiopeia A



The explosion of a star is a dramatic event, but the remains the star leaves behind can be even more dramatic. A new mid-infrared image from NASA's James Webb Space Telescope provides one stunning example. It shows the supernova remnant Cassiopeia A (Cas A), created by a stellar explosion seen from Earth 340 years ago. Cas A is the youngest known remnant from an exploding, massive star in our galaxy, which makes it a unique opportunity to learn more about how such supernovae occur.
Published How to see the invisible: Using the dark matter distribution to test our cosmological model



Astrophysicists have measured a value for the 'clumpiness' of the universe's dark matter (known to cosmologists as 'S8') of 0.776, which does not align with the value derived from the Cosmic Microwave Background, which dates back to the universe's origins. This has intriguing implications for the standard cosmological model.
Published Hubble sees possible runaway black hole creating a trail of stars



There's an invisible monster on the loose, barreling through intergalactic space so fast that if it were in our solar system, it could travel from Earth to the Moon in 14 minutes. This supermassive black hole, weighing as much as 20 million Suns, has left behind a never-before-seen 200,000-light-year-long 'contrail' of newborn stars, twice the diameter of our Milky Way galaxy. It's likely the result of a rare, bizarre game of galactic billiards among three massive black holes.
Published Twinkling stars fuel interstellar dust



Of the many different kinds of stars, asymptotic giant branch (AGB) stars, usually slightly larger and older than our own sun, are known producers of interstellar dust. Dusty AGBs are particularly prominent producers of dust, and the light they shine happens to vary widely. For the first time, a long-period survey has found the variable intensity of dusty AGBs coincides with variations in the amount of dust these stars produce. As this dust can lead to the creation of planets, its study can shed light on our own origins.
Published Random matrix theory approaches the mystery of the neutrino mass



Scientists analyzed each element of the neutrino mass matrix belonging to leptons and showed theoretically that the intergenerational mixing of lepton flavors is large. Furthermore, by using the mathematics of random matrix theory, the research team was able to demonstrate, as much as is possible at this stage, why the calculation of the squared difference of the neutrino masses are in close agreement with the experimental results in the case of the seesaw model with the random Dirac and Majorana matrices. The results of this research are expected to contribute to the further development of particle theory research, which largely remains a mystery.
Published Hubble unexpectedly finds double quasar in distant universe



The early universe was a rambunctious place where galaxies often bumped into each other and even merged together. Using NASA's Hubble Space Telescope and other space and ground-based observatories, astronomers investigating these developments have made an unexpected and rare discovery: a pair of gravitationally bound quasars, both blazing away inside two merging galaxies. They existed when the universe was just 3 billion years old.
Published DMI allows magnon-magnon coupling in hybrid perovskites



An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.
Published Do Earth-like exoplanets have magnetic fields? Far-off radio signal is promising sign



Earth's magnetic field does more than keep everyone's compass needles pointed in the same direction. It also helps preserve Earth's sliver of life-sustaining atmosphere by deflecting high energy particles and plasma regularly blasted out of the sun. Researchers have now identified a prospective Earth-sized planet in another solar system as a prime candidate for also having a magnetic field -- YZ Ceti b, a rocky planet orbiting a star about 12 light-years away from Earth.
Published Absolute zero in the quantum computer



Absolute zero cannot be reached -- unless you have an infinite amount of energy or an infinite amount of time. Scientists in Vienna (Austria) studying the connection between thermodynamics and quantum physics have now found out that there is a third option: Infinite complexity. It turns out that reaching absolute zero is in a way equivalent to perfectly erasing information in a quantum computer, for which an infinetly complex quantum computer would be required.
Published Galaxy clusters yield new evidence for standard model of cosmology



A new study probing the structure and evolution of galaxy clusters shows good agreement with the predictions of standard cosmological models.
Published Molecules precursors to life discovered in the Perseus Cloud



A study has detected the presence of large quantities of complex organic molecules in one of the nearest star forming regions to the solar system.