Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Engineering: Robotics Research, Physics: Quantum Physics
Published Clever clothes! Seams in clothing capture body movement



Everyday clothing may soon be able to capture and record body movements according to new research.
Published Giant clams may hold the answers to making solar energy more efficient



Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.
Published Neutrons on classically inexplicable paths



Is nature really as strange as quantum theory says -- or are there simpler explanations? New neutron measurements prove: It doesn't work without the strange properties of quantum theory.
Published A prosthesis driven by the nervous system helps people with amputation walk naturally



With a new surgical intervention and neuroprosthetic interface, researchers restored a natural walking gait in people with amputations below the knee. Seven patients were able to walk faster, avoid obstacles, and climb stairs more naturally than people with a traditional amputation.
Published New and improved camera inspired by the human eye



Computer scientists have invented a camera mechanism that improves how robots see and react to the world around them. Inspired by how the human eye works, their innovative camera system mimics the tiny involuntary movements used by the eye to maintain clear and stable vision over time.
Published Nanorobot with hidden weapon kills cancer cells



Researchers have developed nanorobots that kill cancer cells in mice. The robot's weapon is hidden in a nanostructure and is exposed only in the tumour microenvironment, sparing healthy cells.
Published Visual explanations of machine learning models to estimate charge states in quantum dots



To form qubit states in semiconductor materials, it requires tuning for numerous parameters. But as the number of qubits increases, the amount of parameters also increases, thereby complicating this process. Now, researchers have automated this process, overcoming a significant barrier to realizing quantum computers.
Published The future of metals research with artificial intelligence



A research team has developed an optimal artificial intelligence model to predict the yield strength of various metals, effectively addressing traditional cost and time limitations.
Published Light-controlled artificial maple seeds could monitor the environment even in hard-to-reach locations



Researchers have developed a tiny robot replicating the aerial dance of falling maple seeds. In the future, this robot could be used for real-time environmental monitoring or delivery of small samples even in inaccessible terrain such as deserts, mountains or cliffs, or the open sea. This technology could be a game changer for fields such as search-and-rescue, endangered species studies, or infrastructure monitoring.
Published Characterization of the extraordinary thermoelectric properties of cadmium arsenide thin films



If there's one thing we humans are good at, it's producing heat. Significant amounts, and in many cases most of the energy we generate and put into our systems we lose as heat, whether it be our appliances, our transportation, our factories, even our electrical grid.
Published Understanding quantum states: New research shows importance of precise topography in solid neon qubits



A new study shows new insight into the quantum state that describes the condition of electrons on an electron-on-solid-neon quantum bit, information that can help engineers build this innovative technology.
Published A chip-scale Titanium-sapphire laser



With a single leap from tabletop to the microscale, engineers have produced the world's first practical Titanium-sapphire laser on a chip, democratizing a once-exclusive technology.
Published Precision instrument bolsters efforts to find elusive dark energy



Dark energy -- a mysterious force pushing the universe apart at an ever-increasing rate -- was discovered 26 years ago, and ever since, scientists have been searching for a new and exotic particle causing the expansion. Physicists combined an optical lattice with an atom interferometer to hold atoms in place for up to 70 seconds -- a record for an atom interferometer -- allowing them to more precisely test for deviations from the accepted theory of gravity that could be caused by dark energy particles such as chameleons or symmetrons. Though they detected no anomalies, they're improving the experiment to perform more sensitive tests of gravity, including whether gravity is quantized.
Published Researchers discover new flat electronic bands, paving way for advanced quantum materials



Scientists predict the existence of flat electronic bands at the Fermi level, a finding that could enable new forms of quantum computing and electronic devices.
Published Robots face the future



Researchers have found a way to bind engineered skin tissue to the complex forms of humanoid robots. This brings with it potential benefits to robotic platforms such as increased mobility, self-healing abilities, embedded sensing capabilities and an increasingly lifelike appearance. Taking inspiration from human skin ligaments, the team included special perforations in a robot face, which helped a layer of skin take hold.
Published Meet CARMEN, a robot that helps people with mild cognitive impairment



Meet CARMEN, short for Cognitively Assistive Robot for Motivation and Neurorehabilitation -- a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory, attention, and executive functioning at home.
Published New NOvA results add to mystery of neutrinos



The international collaboration presented their first results with new data in four years, featuring a new low-energy sample of electron neutrinos and a dataset doubled in size.
Published Breakthrough may clear major hurdle for quantum computers



The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.
Published New material puts eco-friendly methanol conversion within reach



Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.
Published Breakthrough approach enables bidirectional BCI functionality



Brain-computer interfaces or BCIs hold immense potential for individuals with a wide range of neurological conditions, but the road to implementation is long and nuanced for both the invasive and noninvasive versions of the technology. Scientists have now successfully integrated a novel focused ultrasound stimulation to realize bidirectional BCI that both encodes and decodes brain waves using machine learning in a study with 25 human subjects. This work opens up a new avenue to significantly enhance not only the signal quality, but also, overall nonivasive BCI performance by stimulating targeted neural circuits.