Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Physics: Quantum Physics, Space: Cosmology
Published Stacked up against the rest



Scientists have hypothesized that moir excitons -- electron-hole pairs confined in moir interference fringes which overlap with slightly offset patterns -- may function as qubits in next-generation nano-semiconductors. However, due to diffraction limits, it has not been possible to focus light enough in measurements, causing optical interference from many moir excitons. To solve this, researchers have developed a new method of reducing these moir excitons to measure the quantum coherence time and realize quantum functionality.
Published Researchers develop general framework for designing quantum sensors



Researchers have designed a protocol for harnessing the power of quantum sensors. The protocol could give sensor designers the ability to fine-tune quantum systems to sense signals of interest, creating sensors that are vastly more sensitive than traditional sensors.
Published What no one has seen before -- simulation of gravitational waves from failing warp drive



Physicists have been exploring the theoretical possibility of spaceships driven by compressing the four-dimensional spacetime for decades. Although this so-called 'warp drive' originates from the realm of science fiction, it is based on concrete descriptions in general relativity. A new study takes things a step further -- simulating the gravitational waves such a drive might emit if it broke down.
Published Breaking new ground for computing technologies with electron-hole crystals



A team developed a novel method to successfully visualise electron-hole crystals in an exotic quantum material. Their breakthrough could pave the way for new advancements in computing technologies, including in-memory and quantum computing.
Published Dark matter: A camera trap for the invisible



AI-powered image recognition could give researchers a new tool in hunt for dark matter.
Published Researchers trap atoms, forcing them to serve as photonic transistors



Researchers have developed a means to realize cold-atom integrated nanophotonic circuits.
Published Optical fibers fit for the age of quantum computing



A new generation of specialty optical fibers has been developed by physicists to cope with the challenges of data transfer expected to arise in the future age of quantum computing.
Published Atomic 'GPS' elucidates movement during ultrafast material transitions



Scientists have created the first-ever atomic movies showing how atoms rearrange locally within a quantum material as it transitions from an insulator to a metal. With the help of these movies, the researchers discovered a new material phase that settles a years-long scientific debate and could facilitate the design of new transitioning materials with commercial applications.
Published 'Kink state' control may provide pathway to quantum electronics



The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.
Published Quantum sensor for the atomic world



In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.
Published Nonreciprocal interactions go nonlinear



Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so called non-conservative interactions.
Published Spin qubits go trampolining



Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.
Published Researchers explore the effects of stellar magnetism on potential habitability of exoplanets



A study extends the definition of a habitable zone for planets to include their star's magnetic field.
Published Another intermediate-mass black hole discovered at the center of our galaxy



So far, only about ten intermediate-mass black holes have been discovered in the entire universe. The newly identified black hole causes surrounding stars in a cluster to move in an unexpectedly orderly way.
Published Powerful new particle accelerator a step closer with muon-marshalling technology



New experimental results show particles called muons can be corralled into beams suitable for high-energy collisions, paving the way for new physics.
Published Physicists develop new theory describing the energy landscape formed when quantum particles gather together



An international team of physicists has proven new theorems in quantum mechanics that describe the 'energy landscapes' of collections of quantum particles. Their work addresses decades-old questions, opening up new routes to make computer simulation of materials much more accurate. This, in turn, may help scientists design a suite of materials that could revolutionize green technologies.
Published Paving the way to extremely fast, compact computer memory



Researchers have demonstrated that the layered multiferroic material nickel iodide (NiI2) may be the best candidate yet for devices such as magnetic computer memory that are extremely fast and compact. Specifically, they found that NiI2 has greater magnetoelectric coupling than any known material of its kind.
Published Sun-like stars found orbiting hidden companions



Astronomers have uncovered what appear to be 21 neutron stars in orbit around stars like our Sun. The discovery is surprising because it is not clear how a star that exploded winds up next to a star like our Sun.
Published Breakthrough in quantum microscopy: Researchers are making electrons visible in slow motion



Physicists are developing quantum microscopy which enables them for the first time to record the movement of electrons at the atomic level with both extremely high spatial and temporal resolution. Their method has the potential to enable scientists to develop materials in a much more targeted way than before.
Published JWST unveils stunning ejecta and CO structures in Cassiopeia A's young supernova



Researchers announced the latest findings from the James Webb Space Telescope (JWST) of the supernova remnant, Cassiopeia A (Cas A). These observations of the youngest known core collapse supernova in the Milky Way provide insights into the conditions that lead to the formation and destruction of molecules and dust within supernova ejecta. The study's findings change our understanding of dust formation in the early universe in the galaxies detected by JWST 300 million years after the Big Bang.