Showing 20 articles starting at article 401

< Previous 20 articles        Next 20 articles >

Categories: Physics: Quantum Physics, Space: Cosmology

Return to the site home page

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Sci­en­tists develop fermionic quan­tum pro­ces­sor      (via sciencedaily.com) 

Researchers have designed a new type of quantum computer that uses fermionic atoms to simulate complex physical systems. The processor uses programmable neutral atom arrays and is capable of simulating fermionic models in a hardware-efficient manner using fermionic gates. The team demonstrated how the new quantum processor can efficiently simulate fermionic models from quantum chemistry and particle physics.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: General
Published

Want to know how light works? Try asking a mechanic      (via sciencedaily.com) 

Physicists use a 350-year-old theorem that explains the workings of pendulums and planets to reveal new properties of light waves.

Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Rewriting the past and future of the universe      (via sciencedaily.com)     Original source 

New research has improved the accuracy of the parameters governing the expansion of the Universe. More accurate parameters will help astronomers determine how the Universe grew to its current state, and how it will evolve in the future.

Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Quantum Physics
Published

Demon hunting: Physicists confirm 67-year-old prediction of massless, neutral composite particle      (via sciencedaily.com) 

In 1956, theoretical physicist David Pines predicted that electrons in a solid can do something strange. While they normally have a mass and an electric charge, Pines asserted that they can combine to form a composite particle that is massless, neutral, and does not interact with light. He called this particle a 'demon.' Now, researchers have finally found Pines' demon 67 years after it was predicted.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum physicists simulate super diffusion on a quantum computer      (via sciencedaily.com) 

Quantum physicists have successfully simulated super diffusion in a system of interacting quantum particles on a quantum computer. This is the first step in doing highly challenging quantum transport calculations on quantum hardware and, as the hardware improves over time, such work promises to shed new light in condensed matter physics and materials science.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Unlocking chaos: Ultracold quantum gas reveals insights into wave turbulence      (via sciencedaily.com) 

In the intricate realm of wave turbulence, where predictability falters and chaos reigns, a groundbreaking study has emerged. The new research explores the heart of wave turbulence using an ultracold quantum gas, revealing new insights that could advance our understanding of non-equilibrium physics and have significant implications for various fields.

Offbeat: Space Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

New type of star gives clues to mysterious origin of magnetars      (via sciencedaily.com)     Original source 

Magnetars are the strongest magnets in the Universe. These super-dense dead stars with ultra-strong magnetic fields can be found all over our galaxy but astronomers don't know exactly how they form. Now, using multiple telescopes around the world, researchers have uncovered a living star that is likely to become a magnetar. This finding marks the discovery of a new type of astronomical object -- massive magnetic helium stars -- and sheds light on the origin of magnetars.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Switching 'spin' on and off (and up and down) in quantum materials at room temperature      (via sciencedaily.com) 

Researchers have found a way to control the interaction of light and quantum 'spin' in organic semiconductors, that works even at room temperature.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: General
Published

Using supernovae to study neutrinos' strange properties      (via sciencedaily.com) 

In a new study, researchers have taken an important step toward understanding how exploding stars can help reveal how neutrinos, mysterious subatomic particles, secretly interact with themselves.

Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Carbon-based quantum technology      (via sciencedaily.com) 

Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.

Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers develop a unique quantum mechanical approach to determining metal ductility      (via sciencedaily.com) 

A team of scientists developed a new quantum-mechanics-based approach to predict metal ductility. The team demonstrated its effectiveness on refractory multi-principal-element alloys.

Chemistry: Organic Chemistry Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Arrays of quantum rods could enhance TVs or virtual reality devices      (via sciencedaily.com) 

Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.

Physics: General Physics: Quantum Physics
Published

Muon g-2 doubles down with latest measurement, explores uncharted territory in search of new physics      (via sciencedaily.com) 

Scientists working on Fermilab's Muon g-2 experiment released the world's most precise measurement yet of the magnetic moment of the muon, bringing particle physics closer to the ultimate showdown between theory and experiment that may uncover new particles or forces.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Potential application of unwanted electronic noise in semiconductors      (via sciencedaily.com) 

Random telegraph noise (RTN) in semiconductors is typically caused by two-state defects. Two-dimensional (2D) van der Waals (vdW) layered magnetic materials are expected to exhibit large fluctuations due to long-range Coulomb interaction; importantly, which could be controlled by a voltage compared to 3D counterparts having large charge screening. Researchers reported electrically tunable magnetic fluctuations and RTN signal in multilayered vanadium-doped tungsten diselenide (WSe2) by using vertical magnetic tunneling junction devices. They identified bistable magnetic states in the 1/f2 RTNs in noise spectroscopy, which can be further utilized for switching devices via voltage polarity.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Webb reveals colors of Earendel, most distant star ever detected      (via sciencedaily.com) 

NASA's James Webb Space Telescope has followed up on observations by the Hubble Space Telescope of the farthest star ever detected in the very distant universe, within the first billion years after the big bang. Webb's NIRCam (Near-Infrared Camera) instrument reveals the star to be a massive B-type star more than twice as hot as our Sun, and about a million times more luminous.

Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers use SPAD detector to achieve 3D quantum ghost imaging      (via sciencedaily.com) 

Researchers have reported the first 3D measurements acquired with quantum ghost imaging. The new technique enables 3D imaging on a single photon level, yielding the lowest photon dose possible for any measurement.

Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Energy: Technology Engineering: Nanotechnology Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum material exhibits 'non-local' behavior that mimics brain function      (via sciencedaily.com) 

New research shows that electrical stimuli passed between neighboring electrodes can also affect non-neighboring electrodes. Known as non-locality, this discovery is a crucial milestone toward creating brain-like computers with minimal energy requirements.

Computer Science: Artificial Intelligence (AI) Computer Science: General Engineering: Robotics Research Mathematics: Modeling Offbeat: Computers and Math Physics: Optics Physics: Quantum Physics
Published

Self-supervised AI learns physics to reconstruct microscopic images from holograms      (via sciencedaily.com) 

Researchers have unveiled an artificial intelligence-based model for computational imaging and microscopy without training with experimental objects or real data. The team introduced a self-supervised AI model nicknamed GedankenNet that learns from physics laws and thought experiments. Informed only by the laws of physics that universally govern the propagation of electromagnetic waves in space, the researchers taught their AI model to reconstruct microscopic images using only random artificial holograms -- synthesized solely from 'imagination' without relying on any real-world experiments, actual sample resemblances or real data.

Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Current takes a surprising path in quantum material      (via sciencedaily.com) 

Researchers used magnetic imaging to obtain the first direct visualization of how electrons flow in a special type of insulator, and by doing so they discovered that the transport current moves through the interior of the material, rather than at the edges, as scientists had long assumed.