Showing 20 articles starting at article 621

< Previous 20 articles        Next 20 articles >

Categories: Physics: Quantum Physics, Space: Cosmology

Return to the site home page

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists boost quantum signals while reducing noise      (via sciencedaily.com) 

Researchers have developed a special type of amplifier that uses a technique known as squeezing to amplify quantum signals by a factor of 100 while reducing the noise that is inherent in quantum systems by an order of magnitude. Their device is the first to demonstrate squeezing over a broad frequency bandwidth of 1.75 gigahertz, nearly two orders of magnitude higher than other architectures.

Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Distortion-free forms of structured light      (via sciencedaily.com) 

Research offers a new approach to studying complex light in complex systems, such as transporting classical and quantum light through optical fiber, underwater channels, living tissue and other highly aberrated systems.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists make major breakthrough in developing practical quantum computers that can solve big challenges of our time      (via sciencedaily.com) 

Researchers have demonstrated that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking connection speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: Structures and Features
Published

Footprints of galactic immigration uncovered in Andromeda galaxy      (via sciencedaily.com) 

Astronomers have uncovered striking new evidence for a mass migration of stars into the Andromeda Galaxy. Intricate patterns in the motions of stars reveal an immigration history very similar to that of the Milky Way.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: Structures and Features
Published

Star formation in distant galaxies by the James Webb Space Telescope      (via sciencedaily.com) 

Thanks to the James Webb Space Telescope's first images of galaxy clusters, researchers have, for the very first time, been able to examine very compact structures of star clusters inside galaxies, so-called clumps.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: Structures and Features
Published

'Engine' of luminous merging galaxies pinpointed for the first time      (via sciencedaily.com) 

Roughly 500 million light-years away, near the constellation Delphinus, two galaxies are colliding. Known as merging galaxy IIZw096, the luminous phenomenon is obscured by cosmic dust, but researchers first identified a bright, energetic source of light 12 years ago. Now, with a more advanced telescope, the team has pinpointed the precise location of what they have dubbed the 'engine' of the merging galaxy.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Entangled atoms cross quantum network from one lab to another      (via sciencedaily.com) 

Trapped ions have previously only been entangled in one and the same laboratory. Now, teams have entangled two ions over a distance of 230 meters. The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.

Computer Science: Quantum Computers Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers devise a new path toward 'quantum light'      (via sciencedaily.com) 

Researchers have theorized a new mechanism to generate high-energy 'quantum light', which could be used to investigate new properties of matter at the atomic scale.

Energy: Nuclear Physics: Quantum Physics
Published

Amplified search for new forces      (via sciencedaily.com) 

In the search for new forces and interactions beyond the Standard Model, an international team of researchers has now taken a good step forward. The researchers are using an amplification technique based on nuclear magnetic resonance. They use their experimental setup to study a particular exotic interaction between spins: a parity-violating interaction mediated by a new hypothetical exchange particle, called a Z' boson, which exists in addition to the Z boson mediating the weak interaction in the standard Model.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: Structures and Features
Published

Astronomers uncover a one-in-ten-billion binary star system: Kilonova progenitor system      (via sciencedaily.com) 

Astronomers using data from the SMARTS 1.5-meter Telescope at the Cerro Tololo Inter-American Observatory (CTIO), have made the first confirmed detection of a star system that will one day form a kilonova -- the ultra-powerful, gold-producing explosion created by merging neutron stars. These systems are so phenomenally rare that only about 10 such systems are thought to exist in the entire Milky Way.

Energy: Nuclear Physics: Quantum Physics
Published

'Ghostly' neutrinos provide new path to study protons      (via sciencedaily.com) 

Scientists have discovered a new way to investigate the structure of protons using neutrinos, known as 'ghost particles.'

Offbeat: Space Space: Astrophysics Space: Cosmology Space: Structures and Features
Published

The bubbling universe: A previously unknown phase transition in the early universe      (via sciencedaily.com) 

What happened shortly after the universe was born in the Big Bang and began to expand? Bubbles occurred and a previously unknown phase transition happened, according to particle physicists.

Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers take a step toward novel quantum simulators      (via sciencedaily.com) 

If scaled up successfully, the team's new system could help answer questions about certain kinds of superconductors and other unusual states of matter.

Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: Structures and Features
Published

Scientists release newly accurate map of all the matter in the universe      (via sciencedaily.com) 

A group of scientists have released one of the most precise measurements ever made of how matter is distributed across the universe today.

Physics: Quantum Physics
Published

Magnetic sandwich mediating between two worlds      (via sciencedaily.com) 

An international research team has developed a new method for the efficient coupling of terahertz waves with much shorter wavelengths, so-called spin waves. Their experiments, in combination with theoretical models, clarify the fundamental mechanisms of this process previously thought impossible. The results are an important step for the development of novel, energy-saving spin-based technologies for data processing.

Computer Science: General Computer Science: Quantum Computers Physics: Quantum Computing Physics: Quantum Physics
Published

New method to control electron spin paves the way for efficient quantum computers      (via sciencedaily.com) 

Researchers have developed a new method for manipulating information in quantum systems by controlling the spin of electrons in silicon quantum dots. The results provide a promising new mechanism for control of qubits, which could pave the way for the development of a practical, silicon-based quantum computer.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Qubits on strong stimulants      (via sciencedaily.com)     Original source 

In the global push for practical quantum networks and quantum computers, an international team of researchers has demonstrated a leap in preserving the quantum coherence of quantum dot spin qubits.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum physicists make major nanoscopic advance      (via sciencedaily.com)     Original source 

In a new breakthrough, researchers have solved a problem that has caused quantum researchers headaches for years. The researchers can now control two quantum light sources rather than one. Trivial as it may seem to those uninitiated in quantum, this colossal breakthrough allows researchers to create a phenomenon known as quantum mechanical entanglement. This in turn, opens new doors for companies and others to exploit the technology commercially.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: Structures and Features
Published

Were galaxies much different in the early universe?      (via sciencedaily.com) 

The most sensitive telescope now searching for radio signals from cosmic dawn, an era around 200 million years after the Big Bang when stars ignited, has doubled its sensitivity, a new paper reports. While not yet detecting this radiation -- the redshifted 21-centimeter line -- they have put new limits on the elemental composition of galaxies during the Epoch of Reionization. Early galaxies seem to be low in metals, fitting the most popular theory of cosmic evolution.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: Structures and Features Space: The Solar System
Published

Darkest view ever of interstellar ice      (via sciencedaily.com)     Original source 

Astronomers used observations from the James Webb Space Telescope (JWST) to achieve the darkest ever view of a dense interstellar cloud. These observations have revealed the composition of a virtual treasure chest of ices from the early universe, providing new insights into the chemical processes of one of the coldest, darkest places in the universe as well as the origins of the molecules that make up planetary atmospheres.