Showing 20 articles starting at article 941
< Previous 20 articles Next 20 articles >
Categories: Environmental: Ecosystems, Physics: Quantum Physics
Published A simpler way to connect quantum computers


Researchers have developed a new approach to building quantum repeaters, devices that can link quantum computers over long distances. The new system transmits low-loss signals over optical fiber using light in the telecom band, a longstanding goal in the march toward robust quantum communication networks.
Published Can this forest survive? Predicting forest death or recovery after drought



New work could help forest managers predict which forests are most at risk from drought and which will survive.
Published After Chernobyl nuclear accident: The wild boar paradox, finally solved



While the contamination of deer and roe deer decreased over time as expected, the measured levels of radioactivity in the meat of wild boar remained surprisingly high -- higher than the half-life of cesium would suggest. For many years, this 'wild boar paradox' was considered unsolved. Now an explanation has been found: It is a late aftermath of the nuclear weapons tests from the 1960s.
Published Paving the way for advanced quantum sensors


Quantum physics has allowed for the creation of sensors far surpassing the precision of classical devices. Now, several new studies show that the precision of these quantum sensors can be significantly improved using entanglement produced by finite-range interactions. Researchers were able to demonstrate this enhancement using entangled ion-chains with up to 51 particles.
Published Want to fight climate change? Don't poach gorillas (or elephants, hornbills, toucans, etc.)



A new article found that overhunting of gorillas, elephants, and other large fruit-eating seed-dispersers make tropical forests less able to store or sequester carbon.
Published Hotter quantum systems can cool faster than initially colder equivalents


The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.
Published Graphene: Perfection is futile


It has long been known that graphene has excellent electronic properties. However, it was unclear until now how stable these properties are. Are they destroyed by disturbances and additional effects, which are unavoidable in practice, or do they remain intact? Scientists have now succeeded in developing a comprehensive computer model of realistic graphene structures. It turned out that the desired effects are very stable. Even graphene pieces that are not quite perfect can be used well for technological applications.
Published Wildfire, soil emissions increasing air pollution in remote forests



Nitrogen dioxide levels in remote forest areas are increasing, and wildfire and soil emissions are likely the reasons why, finds a new study.
Published Broken by bison, aspen saplings having a tough time in northern Yellowstone


In northern Yellowstone National Park, saplings of quaking aspen, an ecologically important tree in the American West, are being broken by a historically large bison herd, affecting the comeback of aspen from decades of over-browsing by elk.
Published Golden rules for building atomic blocks


Physicists have developed a technique to precisely control the alignment of supermoiré lattices by using a set of golden rules, paving the way for the advancement of next generation moiré quantum matter.
Published Quantum computer unveils atomic dynamics of light-sensitive molecules


Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.
Published Past abrupt changes in North Atlantic Overturning have impacted the climate system across the globe



Abrupt climate changes have affected rainfall patterns worldwide in the past, especially in the tropical monsoon region, a new study shows. An international team of scientists used dripstones from globally distributed caves together with model simulations to analyze the global impacts of rapid Northern-Hemisphere temperature increases, the widely studied Dansgaard-Oeschger events, that repeatedly occurred during the last ice age. The comparison of stalagmite and model data shows in unprecedented detail how these abrupt changes and the associated modifications of the Atlantic overturning circulation, AMOC for short, have affected global atmospheric circulation.
Published Due to sea-ice retreat, zooplankton could remain in the deep longer



Due to intensifying sea-ice melting in the Arctic, sunlight is now penetrating deeper and deeper into the ocean. Since marine zooplankton respond to the available light, this is also changing their behavior -- especially how the tiny organisms rise and fall within the water column. As an international team of researchers has now shown, in the future this could lead to more frequent food shortages for the zooplankton, and to negative effects for larger species including seals and whales.
Published Which radio waves disrupt the magnetic sense in migratory birds?


Many songbirds use the earth's magnetic field as a guide during their migrations, but radiowaves interfere with this ability. A new study has found an upper bound for the frequency that disrupts the magnetic compass.
Published Making the invisible, visible: New method makes mid-infrared light detectable at room temperature


Scientists have developed a new method for detecting mid-infrared (MIR) light at room temperature using quantum systems.
Published Scientists use quantum device to slow down simulated chemical reaction 100 billion times


Using a trapped-ion quantum computer, the research team witnessed the interference pattern of a single atom caused by a 'conical intersection'. Conical intersections are known throughout chemistry and are vital to rapid photo-chemical processes such as light harvesting in human vision or photosynthesis.
Published Researcher finds inspiration from spider webs and beetles to harvest fresh water from thin air


A team of researchers is designing novel systems to capture water vapor in the air and turn it into liquid. They have developed sponges or membranes with a large surface area that continually capture moisture from their surrounding environment.
Published Soils forming on the branches of trees are an overlooked forest habitat


A study on 'canopy soils' on old trees in Costa Rica shows they are important habitats and carbon stores that cannot easily be replaced.
Published New quantum device generates single photons and encodes information


A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.
Published Millions of carbon credits are generated by overestimating forest preservation, study finds



Study analyses 18 major carbon offset projects, and compares their conservation claims with matched sites that offer a real-world benchmark for deforestation levels. Over 60 million carbon credits came from projects that barely reduced deforestation, if at all. Of a potential 89 million credits from these offset schemes, only 5.4 million (6%) were linked to additional carbon reductions through preserved forest.