Showing 20 articles starting at article 261
< Previous 20 articles Next 20 articles >
Categories: Environmental: Wildfires, Physics: Quantum Physics
Published First experimental evidence of hopfions in crystals opens up new dimension for future technology



Hopfions, magnetic spin structures predicted decades ago, have become a hot and challenging research topic in recent years. New findings open up new fields in experimental physics: identifying other crystals in which hopfions are stable, studying how hopfions interact with electric and spin currents, hopfion dynamics, and more.
Published First comprehensive look at effects of 2020-2021 California megafires on terrestrial wildlife habitat



In 2020 and 2021, California experienced fire activity unlike anything recorded in the modern record. When the smoke cleared, the amount of burned forest totaled ten times more than the annual average going back to the late 1800s. We know that wildlife in western forests evolved with changing habitat and disturbances like wildfire. Each species responds differently, some benefiting from openings, others losing critical habitat. What we don't know is how increasing fire severity at large scales is impacting their habitat and survival, because many species are not adapted to these types of 'megafires.'
Published Research reveals rare metal could offer revolutionary switch for future quantum devices



Quantum scientists have discovered a rare phenomenon that could hold the key to creating a 'perfect switch' in quantum devices which flips between being an insulator and superconductor.
Published Three-pronged approach discerns qualities of quantum spin liquids



In 1973, physicist Phil Anderson hypothesized that the quantum spin liquid, or QSL, state existed on some triangular lattices, but he lacked the tools to delve deeper. Fifty years later, a team has confirmed the presence of QSL behavior in a new material with this structure, KYbSe2.
Published Reforms needed to expand prescribed burns



A new paper pinpoints obstacles and suggests strategies for getting more prescribed fire on the ground in the wildfire-prone U.S. West.
Published Riddle of Kondo effect solved in ultimately thin wires



A research team has now directly measured the so-called Kondo effect, which governs the behavior of magnetic atoms surrounded by a sea of electrons: New observations with a scanning tunneling microscope reveal the effect in one-dimensional wires floating on graphene.
Published Keep it secret: Cloud data storage security approach taps quantum physics



Distributed cloud storage is a hot topic for security researchers, and a team is now merging quantum physics with mature cryptography and storage techniques to achieve a cost-effective cloud storage solution.
Published Wildfire, drought cause $11.2 billion in damage to private timberland in three Pacific states, study finds



Wildfires and drought have led to $11.2 billion in damages to privately held timberland in California, Oregon and Washington over the past two decades, a new Oregon State University study found.
Published Tracking down quantum flickering of the vacuum



Absolutely empty -- that is how most of us envision the vacuum. Yet, in reality, it is filled with an energetic flickering: the quantum fluctuations. Experts are currently preparing a laser experiment intended to verify these vacuum fluctuations in a novel way, which could potentially provide clues to new laws in physics. A research team has developed a series of proposals designed to help conduct the experiment more effectively -- thus increasing the chances of success.
Published Low-intensity fires reduce wildfire risk by 60%



High-intensity, often catastrophic, wildfires have become increasingly frequent across the Western U.S. Researchers quantified the value of managed low-intensity burning to dramatically reduce the risk of such fires for years at a time.
Published Atomic dance gives rise to a magnet



Researchers turned a paramagnetic material into a magnet by manipulating electrons' spin via atomic motion.
Published Lightning identified as the leading cause of wildfires in boreal forests, threatening carbon storage



Most wildfires in boreal forests, such as those in Canada, are caused by lightning strikes, according to a study aimed at attributing fire ignition sources globally.
Published Southern Alaska's national forests key to meeting climate, conservation goals



Analyses of U.S. national forests shows that increased protections for two Alaskan forests is a key to meeting climate and biodiversity goals.
Published Physicists trap electrons in a 3D crystal



Physicists have trapped electrons in a pure crystal, marking the first achievement of an electronic flat band in a three-dimensional material. The results provide a new way for scientists to explore rare electronic states in 3D materials.
Published Milestone moment toward development of nuclear clock



Physicists have started the countdown on developing a new generation of timepieces capable of shattering records by providing accuracy of up to one second in 300 billion years, or about 22 times the age of the universe.
Published Vacuum in optical cavity can change material's magnetic state without laser excitation



Researchers in Germany and the USA have produced the first theoretical demonstration that the magnetic state of an atomically thin material, ?-RuCl3, can be controlled solely by placing it into an optical cavity. Crucially, the cavity vacuum fluctuations alone are sufficient to change the material's magnetic order from a zigzag antiferromagnet into a ferromagnet.
Published The kids aren't alright: Saplings reveal how changing climate may undermine forests



Researchers studied how young trees respond to a hotter, drier climate. Their findings can help shape forest management policy and our understanding of how landscapes will change.
Published What a '2D' quantum superfluid feels like to the touch



Researchers have discovered how superfluid helium 3He would feel if you could put your hand into it. The interface between the exotic world of quantum physics and classical physics of the human experience is one of the major open problems in modern physics. Nobody has been able to answer this question during the 100-year history of quantum physics.
Published Optical-fiber based single-photon light source at room temperature for next-generation quantum processing



Single-photon emitters quantum mechanically connect quantum bits (or qubits) between nodes in quantum networks. They are typically made by embedding rare-earth elements in optical fibers at extremely low temperatures. Now, researchers have developed an ytterbium-doped optical fiber at room temperature. By avoiding the need for expensive cooling solutions, the proposed method offers a cost-effective platform for photonic quantum applications.
Published Late not great -- imperfect timekeeping places significant limit on quantum computers



Quantum physicists show that imperfect timekeeping places a fundamental limit to quantum computers and their applications. The team claims that even tiny timing errors add up to place a significant impact on any large-scale algorithm, posing another problem that must eventually be solved if quantum computers are to fulfill the lofty aspirations that society has for them.