Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Environmental: Wildfires, Physics: Quantum Physics
Published Researchers enhance tool to better predict where and when wildfires will occur



A newly enhanced database is expected to help wildfire managers and scientists better predict where and when wildfires may occur by incorporating hundreds of additional factors that impact the ignition and spread of fire.
Published Scientists use AI to predict a wildfire's next move



Researchers have developed a new model that combines generative AI and satellite data to accurately forecast wildfire spread.
Published Powerful new particle accelerator a step closer with muon-marshalling technology



New experimental results show particles called muons can be corralled into beams suitable for high-energy collisions, paving the way for new physics.
Published Physicists develop new theory describing the energy landscape formed when quantum particles gather together



An international team of physicists has proven new theorems in quantum mechanics that describe the 'energy landscapes' of collections of quantum particles. Their work addresses decades-old questions, opening up new routes to make computer simulation of materials much more accurate. This, in turn, may help scientists design a suite of materials that could revolutionize green technologies.
Published Paving the way to extremely fast, compact computer memory



Researchers have demonstrated that the layered multiferroic material nickel iodide (NiI2) may be the best candidate yet for devices such as magnetic computer memory that are extremely fast and compact. Specifically, they found that NiI2 has greater magnetoelectric coupling than any known material of its kind.
Published Breakthrough in quantum microscopy: Researchers are making electrons visible in slow motion



Physicists are developing quantum microscopy which enables them for the first time to record the movement of electrons at the atomic level with both extremely high spatial and temporal resolution. Their method has the potential to enable scientists to develop materials in a much more targeted way than before.
Published Wildfire smoke has a silver lining: It can help protect vulnerable tree seedlings



Forest scientists studying tree regeneration have found that wildfire smoke comes with an unexpected benefit: It has a cooling capacity that can make life easier for vulnerable seedlings.
Published Complex impact of large wildfires on ozone layer dynamics



In a revelation highlighting the fragile balance of our planet's atmosphere, scientists have uncovered an unexpected link between massive wildfire events and the chemistry of the ozone layer. Using satellite data and numerical modeling, the team discovered that an enormous smoke-charged vortex nearly doubles the southern hemispheric aerosol burden in the middle stratosphere of the Earth and reorders ozone depletion at different heights. This study reveals how wildfires, such as the catastrophic 2019/20 Australian bushfires, impact the stratosphere in previously unseen ways.
Published Forest carbon storage has declined across much of the Western U.S., likely due to drought and fire



Forests have been embraced as a natural climate solution, due to their ability to soak up carbon dioxide from the atmosphere as they grow, locking it up in their trunks, branches, leaves, and roots. But a new study confirms widespread doubts about the potential for most forests in the Western US to help curb climate change. The paper analyzed trends in carbon storage across the American West from 2005 to 2019.
Published Light-induced Meissner effect



Researchers have developed a new experiment capable of monitoring the magnetic properties of superconductors at very fast speeds.
Published A breakthrough on the edge: One step closer to topological quantum computing



Researchers have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing.
Published Moving from the visible to the infrared: Developing high quality nanocrystals



Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published A 2D device for quantum cooling



Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published A genetic algorithm for phononic crystals



Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.
Published Giant clams may hold the answers to making solar energy more efficient



Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.
Published Neutrons on classically inexplicable paths



Is nature really as strange as quantum theory says -- or are there simpler explanations? New neutron measurements prove: It doesn't work without the strange properties of quantum theory.
Published Visual explanations of machine learning models to estimate charge states in quantum dots



To form qubit states in semiconductor materials, it requires tuning for numerous parameters. But as the number of qubits increases, the amount of parameters also increases, thereby complicating this process. Now, researchers have automated this process, overcoming a significant barrier to realizing quantum computers.
Published Characterization of the extraordinary thermoelectric properties of cadmium arsenide thin films



If there's one thing we humans are good at, it's producing heat. Significant amounts, and in many cases most of the energy we generate and put into our systems we lose as heat, whether it be our appliances, our transportation, our factories, even our electrical grid.
Published Understanding quantum states: New research shows importance of precise topography in solid neon qubits



A new study shows new insight into the quantum state that describes the condition of electrons on an electron-on-solid-neon quantum bit, information that can help engineers build this innovative technology.
Published A chip-scale Titanium-sapphire laser



With a single leap from tabletop to the microscale, engineers have produced the world's first practical Titanium-sapphire laser on a chip, democratizing a once-exclusive technology.