Showing 20 articles starting at article 481

< Previous 20 articles        Next 20 articles >

Categories: Environmental: Wildfires, Physics: Quantum Physics

Return to the site home page

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Instrument adapted from astronomy observation helps capture singular quantum interference effects      (via sciencedaily.com) 

By adapting technology used for gamma-ray astronomy, researchers has found X-ray transitions previously thought to have been unpolarized according to atomic physics, are in fact highly polarized.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Superconducting amplifiers offer high performance with lower power consumption      (via sciencedaily.com) 

Researchers have devised a new concept of superconducting microwave low-noise amplifiers for use in radio wave detectors for radio astronomy observations, and successfully demonstrated a high-performance cooled amplifier with power consumption three orders of magnitude lower than that of conventional cooled semiconductor amplifiers. This result is expected to contribute to the realization of large-scale multi-element radio cameras and error-tolerant quantum computers, both of which require a large number of low-noise microwave amplifiers.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Sculpting quantum materials for the electronics of the future      (via sciencedaily.com) 

The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.

Computer Science: General Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Qubits put new spin on magnetism: Boosting applications of quantum computers      (via sciencedaily.com) 

Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

Displays with more brilliant colors through a fundamental physical concept      (via sciencedaily.com) 

New research has shown that a strong coupling of light and material increases the colour brilliance of OLED displays. This increase is independent of the viewing angle and does not affect energy efficiency.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough in the understanding of quantum turbulence      (via sciencedaily.com) 

Researchers have shown how energy disappears in quantum turbulence, paving the way for a better understanding of turbulence in scales ranging from the microscopic to the planetary. The team's findings demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales. In the future, an improved understanding of turbulence beginning on the quantum level could allow for improved engineering in domains where the flow and behavior of fluids and gases like water and air is a key question. Understanding that in classical fluids will help scientists do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Modelling superfast processes in organic solar cell material      (via sciencedaily.com) 

In organic solar cells, carbon-based polymers convert light into charges that are passed to an acceptor. Scientists have now calculated how this happens by combining molecular dynamics simulations with quantum calculations and have provided theoretical insights to interpret experimental data.

Physics: General Physics: Quantum Physics
Published

STAR physicists track sequential 'melting' of upsilons      (via sciencedaily.com) 

Scientists using the Relativistic Heavy Ion Collider (RHIC) to study some of the hottest matter ever created in a laboratory have published their first data showing how three distinct variations of particles called upsilons sequentially 'melt,' or dissociate, in the hot goo.

Environmental: General Environmental: Water Environmental: Wildfires Geoscience: Earth Science Geoscience: Environmental Issues
Published

New model provides improved air-quality predictions in fire-prone areas      (via sciencedaily.com) 

Globally, wildfires are becoming more frequent and destructive, generating a significant amount of smoke that can be transported thousands of miles, driving the need for more accurate air pollution forecasts. Researchers have now developed a deep learning model that provides improved predictions of air quality in wildfire-prone areas and can differentiate between wildfires and non-wildfires.

Environmental: Wildfires Geoscience: Severe Weather
Published

A mechanistic and probabilistic method for predicting wildfires      (via sciencedaily.com) 

In the event of dry weather and high winds, power system-ignited incidents are more likely to develop into wildfires. The risk is greater if vegetation is nearby. A new study provides the methodology for predicting at what point during a high wind storm, powerline ignition is likely.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnetism fosters unusual electronic order in quantum material      (via sciencedaily.com) 

Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.

Chemistry: Inorganic Chemistry Energy: Technology Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Experiment unlocks bizarre properties of strange metals      (via sciencedaily.com) 

Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Ringing an electronic wave: Elusive massive phason observed in a charge density wave      (via sciencedaily.com) 

Researchers have detected the existence of a charge density wave of electrons that acquires mass as it interacts with the background lattice ions of the material over long distances.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

In the world's smallest ball game, scientists throw and catch single atoms using light      (via sciencedaily.com) 

Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.

Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hitting nuclei with light may create fluid primordial matter      (via sciencedaily.com) 

A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.

Environmental: Wildfires Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography
Published

Smoke particles from wildfires can erode the ozone layer      (via sciencedaily.com) 

A new study finds that smoke particles in the stratosphere can trigger chemical reactions that erode the ozone layer -- and that smoke particles from Australian wildfires widened the ozone hole by 10 percent in 2020.

Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees Environmental: Ecosystems Environmental: Wildfires Geoscience: Environmental Issues
Published

To help dry forests, fire needs to be just the right intensity, and happen more than once      (via sciencedaily.com) 

Research into the ability of a wildfire to improve the health of a forest uncovered a Goldilocks effect -- unless a blaze falls in a narrow severity range, neither too hot nor too cold, it isn't very good at helping forest landscapes return to their historical, more fire-tolerant conditions.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Graphene quantum dots show promise as novel magnetic field sensors      (via sciencedaily.com) 

Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Two-dimensional quantum freeze      (via sciencedaily.com) 

Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.