Showing 20 articles starting at article 321
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Volcanoes, Physics: Quantum Physics
Published Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics


Scientists have demonstrated experimentally a long-theorized relationship between electron and nuclear motion in molecules, which could lead to the design of materials for solar cells, electronic displays and other applications that can make use of this powerful quantum phenomenon.
Published Theory for superfluid helium confirmed


Researchers have achieved a groundbreaking milestone in studying how vortices move in these quantum fluids. A new study of vortex ring motion in superfluid helium provides crucial evidence supporting a recently developed theoretical model of quantized vortices.
Published Researchers establish criterion for nonlocal quantum behavior in networks


A new theoretical study provides a framework for understanding nonlocality, a feature that quantum networks must possess to perform operations inaccessible to standard communications technology. By clarifying the concept, researchers determined the conditions necessary to create systems with strong, quantum correlations.
Published New superconductors can be built atom by atom


The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.
Published Search for dark matter



Scientists have applied a promising new method to search for dark matter particles in a particle accelerator. The method is based on the observation of the spin polarization of a particle beam in a storage ring COSY.
Published Despite doubts from quantum physicists: Einstein's theory of relativity reaffirmed



One of the most basic assumptions of fundamental physics is that the different properties of mass -- weight, inertia and gravitation -- always remain the same in relation to each other. Although all measurements to date confirm the equivalence principle, quantum theory postulates that there should be a violation. This inconsistency between Einstein's gravitational theory and modern quantum theory is the reason why ever more precise tests of the equivalence principle are particularly important. A team has now succeeded in proving with 100 times greater accuracy that passive and active gravitational mass are always equivalent -- regardless of the particular composition of the respective masses.
Published Controlling signal routing in quantum information processing



Routing signals and isolating them against noise and back-reflections are essential in many practical situations in classical communication as well as in quantum processing. In a theory-experimental collaboration, a team has achieved unidirectional transport of signals in pairs of 'one-way streets'. This research opens up new possibilities for more flexible signaling devices.
Published Physicists work to prevent information loss in quantum computing



Nothing exists in a vacuum, but physicists often wish this weren't the case. If the systems that scientists study could be completely isolated from the outside world, things would be a lot easier. Take quantum computing. It's a field that's already drawing billions of dollars in support from tech investors and industry heavyweights including IBM, Google and Microsoft. But if the tiniest vibrations creep in from the outside world, they can cause a quantum system to lose information.
Published Lasering lava to forecast volcanic eruptions



Researchers have optimized a new technique to help forecast how volcanoes will behave, which could save lives and property around the world.
Published Research reveals sources of CO2 from Aleutian-Alaska Arc volcanoes



Scientists have wondered what happens to the organic and inorganic carbon that Earth's Pacific Plate carries with it as it slides into the planet's interior along the volcano-studded Ring of Fire. A new study suggests a notable amount of such subducted carbon returns to the atmosphere rather than traveling deep into Earth's mantle.
Published Climate change will increase impacts of volcanic eruptions



Volcanic disasters have been studied since Pompeii was buried in 79 A.D., leading the public to believe that scientists already know why, where, when and how long volcanoes will erupt. But a volcanologist said these fundamental questions remain a mystery.
Published 'Toggle switch' can help quantum computers cut through the noise



What good is a powerful computer if you can't read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.
Published Nanophotonics: Coupling light and matter



Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).
Published Effect of volcanic eruptions significantly underestimated in climate projections



Researchers have found that the cooling effect that volcanic eruptions have on Earth's surface temperature is likely underestimated by a factor of two, and potentially as much as a factor of four, in standard climate projections.
Published Einstein and Euler put to the test at the edge of the Universe



The cosmos is a unique laboratory for testing the laws of physics, in particular those of Euler and Einstein. Euler described the movements of celestial objects, while Einstein described the way in which celestial objects distort the Universe. Since the discovery of dark matter and the acceleration of the Universe's expansion, the validity of their equations has been put to the test: are they capable of explaining these mysterious phenomena? A team has developed the first method to find out. It considers a never-before-used measure: time distortion.
Published Combining twistronics with spintronics could be the next giant leap in quantum electronics



Quantum researchers twist double bilayers of an antiferromagnet to demonstrate tunable moiré magnetism.
Published Groundwork for future ultra-precise timing links to geosynchronous satellites



Scientists have demonstrated a capability long sought by physicists: transmitting extremely precise time signals through the air between far-flung locations at powers that are compatible with future space-based missions. The results could enable time transfer from the ground to satellites in geosynchronous orbit with femtosecond precision -- 10,000 times better than the existing state-of-the-art satellite approaches. It also would allow for successful synchronization using the bare minimum timing signal strength, which would make the system highly robust in the face of atmospheric disturbances.
Published A Tongan volcano plume produced the most intense lightning rates ever detected



New research showed that the plume emitted by the Hunga Volcano eruption in 2022 created the highest lightning flash rates ever recorded on Earth, more than any storm ever documented.
Published Photosynthesis, key to life on Earth, starts with a single photon



A cutting-edge experiment has revealed the quantum dynamics of one of nature's most crucial processes.
Published For experimental physicists, quantum frustration leads to fundamental discovery



A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.