Showing 20 articles starting at article 141

< Previous 20 articles        Next 20 articles >

Categories: Geoscience: Earthquakes, Physics: Quantum Physics

Return to the site home page

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A new type of cooling for quantum simulators      (via sciencedaily.com)     Original source 

Quantum simulators are quantum systems that can be controlled exceptionally well. They can be used to indirectly learn something about other quantum systems, which cannot be experimented on so easily. Therefore, quantum simulators play an important role in unraveling the big questions of quantum physics. However, they are limited by temperature: They only work well, when they are extremely cold. Scientists have now developed a method to cool quantum simulators even more than before: by splitting a Bose-Einstein-condensate in half, in a very special way.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Bullseye! Accurately centering quantum dots within photonic chips      (via sciencedaily.com)     Original source 

Researchers have now developed standards and calibrations for optical microscopes that allow quantum dots to be aligned with the center of a photonic component to within an error of 10 to 20 nanometers (about one-thousandth the thickness of a sheet of paper). Such alignment is critical for chip-scale devices that employ the radiation emitted by quantum dots to store and transmit quantum information.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

New method to measure entropy production on the nanoscale      (via sciencedaily.com)     Original source 

Entropy, the amount of molecular disorder, is produced in several systems but cannot be measured directly. A new equation sheds new light on how entropy is produced on a very short time scale in laser excited materials.

Geoscience: Earth Science Geoscience: Earthquakes
Published

Mathematical innovations enable advances in seismic activity detection      (via sciencedaily.com)     Original source 

Scientists successfully addressed mathematical challenges in conventional Spectral Matrix analysis, used to analyze three-component seismic signals, by introducing time-delay components. The new technique enables the characterization of various polarized waves and the detection of seismic events that have previously gone unnoticed by conventional methods. These findings pave the way for improving a variety of applications, including earthquake detection.

Geoscience: Earth Science Offbeat: Earth and Climate Offbeat: General Offbeat: Space Physics: General Physics: Quantum Computing Physics: Quantum Physics Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

Scientists on the hunt for evidence of quantum gravity's existence at the South Pole      (via sciencedaily.com)     Original source 

An Antarctic large-scale experiment is striving to find out if gravity also exists at the quantum level. An extraordinary particle able to travel undisturbed through space seems to hold the answer.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists deliver quantum algorithm to develop new materials and chemistry      (via sciencedaily.com)     Original source 

Scientists published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent article, expected to become a powerful tool to investigate the physical properties in electronic systems.

Chemistry: General Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

The world is one step closer to secure quantum communication on a global scale      (via sciencedaily.com)     Original source 

Researchers have brought together two Nobel prize-winning research concepts to advance the field of quantum communication. Scientists can now efficiently produce nearly perfect entangled photon pairs from quantum dot sources.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum interference could lead to smaller, faster, and more energy-efficient transistors      (via sciencedaily.com)     Original source 

Scientists made a single-molecule transistor using quantum interference to control electron flow. This new design offers high on/off ratio and stability, potentially leading to smaller, faster, and more energy-efficient devices. Quantum interference also improves the transistor's sensitivity to voltage changes, further boosting its efficiency.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Cleaning up environmental contaminants with quantum dot technology      (via sciencedaily.com)     Original source 

The 2023 Nobel Prize in Chemistry was focused on quantum dots -- objects so tiny, they're controlled by the strange rules of quantum physics. Quantum dots used in electronics are often toxic, but their nontoxic counterparts are being explored for uses in medicine and in the environment, including water decontamination. One team of researchers has specially designed carbon- and sulfur-based dots for these environmental applications.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum talk with magnetic disks      (via sciencedaily.com)     Original source 

Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology. Addressing this need, a research team is now introducing a new approach for transducing quantum information: the team has manipulated quantum bits, so called qubits, by harnessing the magnetic field of magnons -- wave-like excitations in a magnetic material -- that occur within microscopic magnetic disks.

Chemistry: General Chemistry: Organic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Spectroscopy and theory shed light on excitons in semiconductors      (via sciencedaily.com)     Original source 

Researchers have made very fast and very precise images of excitons -- in fact, accurate to one quadrillionth of a second and one billionth of a meter. This understanding is essential for developing more efficient materials with organic semiconductors.

Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: General Physics: Optics Physics: Quantum Physics
Published

Holographic message encoded in simple plastic      (via sciencedaily.com)     Original source 

Important data can be stored and concealed quite easily in ordinary plastic using 3D printers and terahertz radiation, scientists show. Holography can be done quite easily: A 3D printer can be used to produce a panel from normal plastic in which a QR code can be stored, for example. The message is read using terahertz rays -- electromagnetic radiation that is invisible to the human eye.

Chemistry: General Physics: General Physics: Optics Physics: Quantum Physics
Published

Breakthrough in ultraviolet spectroscopy      (via sciencedaily.com)     Original source 

Physicists achieve major leap in precision and accuracy at extremely low light levels.

Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Optics Physics: Quantum Physics
Published

Plasma oscillations propel breakthroughs in fusion energy      (via sciencedaily.com)     Original source 

Researchers have discovered a new class of plasma oscillations -- the back-and-forth, wave-like movement of electrons and ions. The research paves the way for improved particle accelerators and commercial fusion energy.

Geoscience: Earthquakes Offbeat: Earth and Climate Offbeat: General Physics: Acoustics and Ultrasound
Published

What kinds of seismic signals did Swifties send at LA concert?      (via sciencedaily.com)     Original source 

Seattle may have experienced its own Swift Quake last July, but at an August 2023 concert Taylor Swift's fans in Los Angeles gave scientists a lot of shaking to ponder. After some debate, a research team concluded that it was likely the dancing and jumping motions of the audience at SoFi Stadium -- not the musical beats or reverberations of the sound system -- that generated the concert's distinct harmonic tremors.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Staying in the loop: How superconductors are helping computers 'remember'      (via sciencedaily.com)     Original source 

To advance neuromorphic computing, some researchers are looking at analog improvements -- advancing not just software, but hardware too. Research shows a promising new way to store and transmit information using disordered superconducting loops.

Computer Science: Encryption Computer Science: Quantum Computers Mathematics: General Mathematics: Puzzles Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Exploration Space: General
Published

Satellites for quantum communications      (via sciencedaily.com)     Original source 

Through steady advances in the development of quantum computers and their ever-improving performance, it will be possible in the future to crack our current encryption processes. To address this challenge, researchers are developing encryption methods that will apply physical laws to prevent the interception of messages. To safeguard communications over long distances, the QUICK space mission will deploy satellites.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Powerful new tool ushers in new era of quantum materials research      (via sciencedaily.com)     Original source 

Research in quantum materials is paving the way for groundbreaking discoveries and is poised to drive technological advancements that will redefine the landscapes of industries like mining, energy, transportation, and medtech. A technique called time- and angle-resolved photoemission spectroscopy (TR-ARPES) has emerged as a powerful tool, allowing researchers to explore the equilibrium and dynamical properties of quantum materials via light-matter interaction.

Energy: Technology Engineering: Nanotechnology Physics: General Physics: Quantum Physics Space: General
Published

Giving particle detectors a boost      (via sciencedaily.com)     Original source 

Researchers have tested the performance of a new device that boosts particle signals.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Design rules and synthesis of quantum memory candidates      (via sciencedaily.com)     Original source 

In the quest to develop quantum computers and networks, there are many components that are fundamentally different than those used today. Like a modern computer, each of these components has different constraints. However, it is currently unclear what materials can be used to construct those components for the transmission and storage of quantum information.