Showing 20 articles starting at article 1001
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geography, Physics: Quantum Physics
Published Quantum material exhibits 'non-local' behavior that mimics brain function


New research shows that electrical stimuli passed between neighboring electrodes can also affect non-neighboring electrodes. Known as non-locality, this discovery is a crucial milestone toward creating brain-like computers with minimal energy requirements.
Published Self-supervised AI learns physics to reconstruct microscopic images from holograms


Researchers have unveiled an artificial intelligence-based model for computational imaging and microscopy without training with experimental objects or real data. The team introduced a self-supervised AI model nicknamed GedankenNet that learns from physics laws and thought experiments. Informed only by the laws of physics that universally govern the propagation of electromagnetic waves in space, the researchers taught their AI model to reconstruct microscopic images using only random artificial holograms -- synthesized solely from 'imagination' without relying on any real-world experiments, actual sample resemblances or real data.
Published Current takes a surprising path in quantum material


Researchers used magnetic imaging to obtain the first direct visualization of how electrons flow in a special type of insulator, and by doing so they discovered that the transport current moves through the interior of the material, rather than at the edges, as scientists had long assumed.
Published Sensing and controlling microscopic spin density in materials


Researchers found a way to tune the spin density in diamond by applying an external laser or microwave beam. The finding could open new possibilities for advanced quantum devices.
Published Quantum discovery: Materials can host D-wave effects with F-wave behaviors


In a potential boon for quantum computing, physicists have shown that topologically protected quantum states can be entangled with other, highly manipulable quantum states in some electronic materials.
Published Super Radar: Breakthrough radar research overcomes a nearly century-old trade-off between wavelength and distance resolution


New interference radar functions improve the distance resolution between objects using radar waves. The results may have important ramifications in military, construction, archaeology, mineralogy and many other domains of radar applications. It addresses a nine decades-old problem that requires scientists and engineers to sacrifice detail and resolution for observation distance -- underwater, underground, and in the air.
Published Calculations reveal high-resolution view of quarks inside protons


A collaboration of nuclear theorists has used supercomputers to predict the spatial distributions of charges, momentum, and other properties of 'up' and 'down' quarks within protons. The calculations show that the up quark is more symmetrically distributed and spread over a smaller distance than the down quark.
Published Absence of universal topological signatures in high harmonic generation


Theoreticians report that they found no evidence of any universal topological signatures after performing the first ab initio investigation of high harmonic generation from topological insulators.
Published Nuclear spin's impact on biological processes uncovered


Researchers have discovered that nuclear spin influences biological processes, challenging long-held beliefs. They found that certain isotopes behave differently in chiral environments, affecting oxygen dynamics and transport. This breakthrough could advance biotechnology, quantum biology, and NMR technology, with potential applications in isotope separation and medical imaging.
Published Scientists create novel approach to control energy waves in 4D


Everyday life involves the three dimensions or 3D -- along an X, Y and Z axis, or up and down, left and right, and forward and back. But, in recent years scientists have explored a 'fourth dimension' (4D), or synthetic dimension, as an extension of our current physical reality.
Published When electrons slowly vanish during cooling


Many substances change their properties when they are cooled below a certain critical temperature. Such a phase transition occurs, for example, when water freezes. However, in certain metals there are phase transitions that do not exist in the macrocosm. They arise because of the special laws of quantum mechanics that apply in the realm of nature's smallest building blocks. It is thought that the concept of electrons as carriers of quantized electric charge no longer applies near these exotic phase transitions. Researchers have now found a way to prove this directly. Their findings allow new insights into the exotic world of quantum physics.
Published New method improves proton acceleration with high power laser


Bringing protons up to speed with strong laser pulses -- this still young concept promises many advantages over conventional accelerators. For instance, it seems possible to build much more compact facilities. Prototypes to date, however, in which laser pulses are fired at ultra-thin metal foils, show weaknesses -- especially in the frequency with which they can accelerate protons. An international working group has tested a new technique: In this approach, frozen hydrogen acts as a 'target' for the laser pulses.
Published How atomic nuclei vibrate


Using ultra-high-precision laser spectroscopy on a simple molecule, a group of physicists has measured the wave-like vibration of atomic nuclei with an unprecedented level of precision. The physicists report that they can thus confirm the wave-like movement of nuclear material more precisely that ever before and that they have found no evidence of any deviation from the established force between atomic nuclei.
Published Scientists caught Hofstadter's butterfly in one of the most ancient materials on Earth


Researchers have revisited one of the most ancient materials on Earth -- graphite, and discovered new physics that has eluded the field for decades.
Published A new type of quantum bit in semiconductor nanostructures


Researchers have created a quantum superposition state in a semiconductor nanostructure that might serve as a basis for quantum computing. The trick: two optical laser pulses that act as a single terahertz laser pulse.
Published 'Quantum avalanche' explains how nonconductors turn into conductors



The study takes a new approach to answer a long-standing mystery about insulator-to-metal transitions.
Published Detection of bacteria and viruses with fluorescent nanotubes


The new carbon nanotube sensor design resembles a molecular toolbox that can be used to quickly assemble sensors for a variety of purposes -- for instance for detecting bacteria and viruses.
Published Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics


Scientists have demonstrated experimentally a long-theorized relationship between electron and nuclear motion in molecules, which could lead to the design of materials for solar cells, electronic displays and other applications that can make use of this powerful quantum phenomenon.
Published Theory for superfluid helium confirmed


Researchers have achieved a groundbreaking milestone in studying how vortices move in these quantum fluids. A new study of vortex ring motion in superfluid helium provides crucial evidence supporting a recently developed theoretical model of quantized vortices.
Published Researchers establish criterion for nonlocal quantum behavior in networks


A new theoretical study provides a framework for understanding nonlocality, a feature that quantum networks must possess to perform operations inaccessible to standard communications technology. By clarifying the concept, researchers determined the conditions necessary to create systems with strong, quantum correlations.