Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Oceanography, Physics: Quantum Physics
Published Precision instrument bolsters efforts to find elusive dark energy



Dark energy -- a mysterious force pushing the universe apart at an ever-increasing rate -- was discovered 26 years ago, and ever since, scientists have been searching for a new and exotic particle causing the expansion. Physicists combined an optical lattice with an atom interferometer to hold atoms in place for up to 70 seconds -- a record for an atom interferometer -- allowing them to more precisely test for deviations from the accepted theory of gravity that could be caused by dark energy particles such as chameleons or symmetrons. Though they detected no anomalies, they're improving the experiment to perform more sensitive tests of gravity, including whether gravity is quantized.
Published Underwater mountains have a big impact on ocean circulation



Colossal undersea mountains, towering up to thousands of metres high, stir up deep sea currents: impacting how our ocean stores heat and carbon. An international team used numerical modelling to quantify how underwater turbulence around these mountains, called seamounts, influences ocean circulation; finding it is an important mechanism in ocean mixing and one that is missing from climate models used in policymaking.
Published Researchers discover new flat electronic bands, paving way for advanced quantum materials



Scientists predict the existence of flat electronic bands at the Fermi level, a finding that could enable new forms of quantum computing and electronic devices.
Published New NOvA results add to mystery of neutrinos



The international collaboration presented their first results with new data in four years, featuring a new low-energy sample of electron neutrinos and a dataset doubled in size.
Published Much of the Nord Stream gas remained in the sea



Much of the methane released into the southern Baltic Sea from the Nord Stream gas pipeline has remained in the water. This is shown by measurements taken by researchers from the University of Gothenburg.
Published Restored rat-free islands could support hundreds of thousands more breeding seabirds



Archipelago case-study shows that removing invasive rats and restoring native vegetation could help bring back hundreds of thousands of breeding pairs of seabirds lost to tropical islands. Calculating that there are enough fish to sustain restored seabird populations should be an important consideration for restoration projects, scientists say. Restored seabird populations also provide huge boost to the health of surrounding coral reef ecosystems through restored nutrient cycles.
Published Breakthrough may clear major hurdle for quantum computers



The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers.
Published New material puts eco-friendly methanol conversion within reach



Researchers have developed innovative, eco-friendly quantum materials that can drive the transformation of methanol into ethylene glycol. This discovery opens up new possibilities for using eco-friendly materials in photocatalysis, paving the way for sustainable chemical production.
Published Satellites to monitor marine debris from space



Detecting marine debris from space is now a reality, according to a new study. Until now, the amount of litter -- mostly plastic -- on the sea surface was rarely high enough to generate a detectable signal from space. However, using supercomputers and advanced search algorithms, the research team has demonstrated that satellites are an effective tool for estimating the amount of litter in the sea.
Published Quantum entanglement measures Earth rotation



Researchers carried out a pioneering experiment where they measured the effect of the rotation of Earth on quantum entangled photons. The work represents a significant achievement that pushes the boundaries of rotation sensitivity in entanglement-based sensors, potentially setting the stage for further exploration at the intersection between quantum mechanics and general relativity.
Published A liquid crystal source of photon pairs



Spontaneous parametric down-conversion (SPDC), as a source of entangled photons, is of great interest for quantum physics and quantum technology, but so far it could be only implemented in solids. Researchers have demonstrated, for the first time, SPDC in a liquid crystal. The results open a path to a new generation of quantum sources: efficient and electric-field tunable.
Published A conservation market could incentivize global ocean protection



Thirty-by-thirty: protect 30% of the planet by 2030. While conservation is popular in principle, the costs of actually enacting it often stall even the most earnest efforts. Researchers have now proposed a market-based approach to achieving the 30x30 targets in the ocean.
Published Pair plasmas found in deep space can now be generated in the lab



Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.
Published Scientists unravel drivers of the global zinc cycle in our oceans, with implications for a changing climate



The understanding of the global zinc cycle in our oceans has important implications in the context of warming oceans. A warmer climate increases erosion, leading to more dust in the atmosphere and consequently more dust being deposited into the oceans. More dust means more scavenging of zinc particles, leading to less zinc being available to sustain phytoplankton and other marine life, thereby diminishing the oceans' ability to absorb carbon.
Published Ancient ocean slowdown warns of future climate chaos



When it comes to the ocean's response to global warming, we're not in entirely uncharted waters. A new study shows that episodes of extreme heat in Earth's past caused the exchange of waters from the surface to the deep ocean to decline.
Published Quantum data assimilation: A quantum leap in weather prediction



Data assimilation is an important mathematical discipline in earth sciences, particularly in numerical weather prediction (NWP). However, conventional data assimilation methods require significant computational resources. To address this, researchers developed a novel method to solve data assimilation on quantum computers, significantly reducing the computation time. The findings of the study have the potential to advance NWP systems and will inspire practical applications of quantum computers for advancing data assimilation.
Published Quantum dots and metasurfaces: Deep connections in the nano world



A team has developed printable, highly efficient light-emitting metasurfaces.
Published A mountainous mystery uncovered in Australia's pink sands



Deposits of deep-pink sand washing up on South Australian shores shed new light on when the Australian tectonic plate began to subduct beneath the Pacific plate, as well as the presence of previously unknown ancient Antarctic mountains.
Published Uncovering the nature of emergent magnetic monopoles



To understand the unique physical phenomena associated with the properties of magnetic hedgehogs and antihedgehogs, which behave as virtual magnetic monopoles and antimonopoles respectively, it is essential to study their intrinsic excitations. In a new study, researchers revealed the dynamical nature of collective excitation modes in hedgehog lattices in itinerant chiral magnets. Their findings serve as the foundation for studying the dynamics of emergent magnetic monopoles in magnets.
Published New technique could help build quantum computers of the future



Researchers have demonstrated a new method that could enable the large-scale manufacturing of optical qubits. The advance could bring us closer to a scalable quantum computer.