Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Oceanography, Physics: Quantum Physics
Published Underwater architects: The 'burrowing effect' of foraminifera on marine environments



Impact of single-cell organisms on sediment oxygen levels and bacterial diversity measured for the first time.
Published Coral reefs in peril from record-breaking ocean heat



Record breaking marine heatwaves will cause devastating mass coral bleaching worldwide in the next few years, according to a coral reef scientist.
Published Adapting to hypoxia: Zooplankton influence the efficiency of the biological carbon pump in the Humboldt Current off Peru



Marine organisms play a crucial role in the global carbon cycle. Phytoplankton absorb carbon dioxide from the atmosphere and sequester it in organic matter that sinks to the deep ocean where it can be stored for long periods of time. Until now, this process -- the biological carbon pump -- was thought to be particularly efficient in oxygen-poor areas. A new study suggests that the influence of certain zooplankton species on the biological carbon pump has been underestimated.
Published Bowtie resonators that build themselves bridge the gap between nanoscopic and macroscopic



Two nanotechnology approaches converge by employing a new generation of fabrication technology. It combines the scalability of semiconductor technology with the atomic dimensions enabled by self-assembly.
Published Climate change shown to cause methane to be released from the deep ocean



New research has shown that fire-ice -- frozen methane which is trapped as a solid under our oceans -- is vulnerable to melting due to climate change and could be released into the sea.
Published Greenhouse gases in oceans are altered by climate change impact on microbes



The ocean is a global life-support system, and climate change causes such as ocean warming, acidification, deoxygenation, and nitrogen-deposition alter the delicate microbial population in oceans. The marine microbial community plays an important role in the production of greenhouse gases like nitrous oxide and methane. Scientists have explored the climate change impact on marine microbes. Their research helps raise awareness about climate change severity and the importance of ocean resources.
Published The ocean may be storing more carbon than estimated in earlier studies



The ocean's capacity to store atmospheric carbon dioxide is some 20% greater than the estimates contained in the latest IPCC report. Scientists looked at the role played by plankton in the natural transport of carbon from surface waters down to the seabed. Plankton gobble up carbon dioxide and, as they grow, convert it into organic tissue via photosynthesis.
Published Diamonds and rust help unveil 'impossible' quasi-particles



Researchers have discovered magnetic monopoles -- isolated magnetic charges -- in a material closely related to rust, a result that could be used to power greener and faster computing technologies.
Published Deep sea sensor reveals that corals produce reactive oxygen species



A new sensor on the submersible Alvin discovered reactive oxygen species for the first time in deep-sea corals, broadening our understanding of fundamental coral physiology.
Published New theory unites Einstein's gravity with quantum mechanics



The prevailing assumption has been that Einstein's theory of gravity must be modified, or 'quantized', in order to fit within quantum theory. This is the approach of two leading candidates for a quantum theory of gravity, string theory and loop quantum gravity. But a new theory challenges that consensus and takes an alternative approach by suggesting that spacetime may be classical -- that is, not governed by quantum theory at all.
Published Quantum physics: Superconducting Nanowires Detect Single Protein Ions



An international research team has achieved a breakthrough in the detection of protein ions: Due to their high energy sensitivity, superconducting nanowire detectors achieve almost 100% quantum efficiency and exceed the detection efficiency of conventional ion detectors at low energies by a factor of up to a 1,000. In contrast to conventional detectors, they can also distinguish macromolecules by their impact energy. This allows for more sensitive detection of proteins and it provides additional information in mass spectrometry.
Published Ash can fertilize the oceans



Flames roared through Santa Barbara County in late 2017. UC Santa Barbara canceled classes, and the administration recommended donning an N95, long before the COVID pandemic made the mask a household item. Smoke and ash choked the air, but the Thomas Fire's effects weren't restricted to the land and sky. Huge amounts of ash settled into the oceans, leaving researchers to wonder what effect it might have on marine life.
Published Study identifies key algae species helping soft corals survive warming oceans



During a two-year survey of soft corals in the Florida Keys, scientists identified three species of octocorals that have survived heat waves. While the coral animal itself may be heat tolerant, scientists concluded that the symbiotic algae inside the coral serve as a protector of sorts.
Published Illuminating the benefits of marine protected areas for ecotourism, and vice versa



As California, the U.S. and the world work to make good on commitments to conserve 30% of oceans and lands by 2030, all strategies are on the table -- and under the microscope. When it comes to the ocean, one valuable tool is marine protected areas (MPAs), regions that are defined, designated and managed for long-term conservation. Among other benefits, MPAs protect habitats and promote species diversity. They also hold value for communities and industries.
Published Antarctica's ancient ice sheets foreshadow dynamic changes in Earth's future



Identifying how and why Antarctica's major ice sheets behaved the way they did in the early Miocene could help inform understanding of the sheets' behavior under a warming climate. Together, the ice sheets lock a volume of water equivalent to more than 50 meters of sea level rise and influence ocean currents that affect marine food webs and regional climates. Their fate has profound consequences for life nearly everywhere on Earth.
Published Researchers show an old law still holds for quirky quantum materials



Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat. And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested. This so-called Wiedemann-Franz law has held ever since -- except in quantum materials. Now, a theoretical argument put forth by physicists suggests that the law should, in fact, approximately hold for one type of quantum material, the cuprate superconductors.
Published Decoding past climates through dripstones



A recent study demonstrates how dripstones can be crucial for reconstructing past climates. The new approach can provide a detailed picture of the climate around early human occupations in South Africa.
Published A new bacterial species from a hydrothermal vent throws light on their evolution



A new bacterial species discovered at the deep-sea hydrothermal vent site 'Crab Spa' provides a deeper understanding of bacterial evolution.
Published Being prepared for storm surges on the Baltic Sea coast



The record storm surge in October 2023 caused severe damage to the German Baltic coast. Effective adaptation scenarios to rising sea levels are therefore becoming increasingly urgent. In two recent studies, researchers have modeled both the flooding extent along the Baltic Sea coastal areas and two possible upgrades for current dike lines in high resolution. They modeled various storm surge and sea level rise scenarios.
Published Blasts to clear World War II munitions could contaminate the ocean



World War II concluded decades ago, but live mines lurking on the ocean floor still pose threats, potentially spewing unexpected geysers or releasing contaminants into the water. Experts conduct controlled explosions to clear underwater munitions, but concerns have arisen over the environmental impacts from these blasts. New results show that the contamination produced by detonation depends on the blast type, with weaker explosions leaving behind more potentially toxic residues.