Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Archaeology: General, Physics: Quantum Physics
Published Study is step towards energy-efficient quantum computing in magnets



Researchers have managed to generate propagating spin waves at the nanoscale and discovered a novel pathway to modulate and amplify them. Their discovery could pave the way for the development of dissipation free quantum information technologies. As the spin waves do not involve electric currents these chips will be free from associated losses of energy. The rapidly growing popularity of artificial intelligence comes with an increasing desire for fast and energy efficient computing devices and calls for novel ways to store and process information. The electric currents in conventional devices suffer from losses of energy and subsequent heating of the environment.
Published Theory and experiment combine to shine a new light on proton spin



Nuclear physicists have long been working to reveal how the proton gets its spin. Now, a new method that combines experimental data with state-of-the-art calculations has revealed a more detailed picture of spin contributions from the very glue that holds protons together.
Published More than spins: Exploring uncharted territory in quantum devices



Many of today's quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the '0' and the '1'. However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. Researchers now demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.
Published How a tiny device could lead to big physics discoveries and better lasers



Researchers have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.
Published Shedding light on the chemical enigma of sulfur trioxide in the atmosphere



Researchers discovered that sulfur trioxide can form products other than sulfuric acid in the atmosphere by interacting with organic and inorganic acids. These previously uncharacterized acid sulfuric anhydride products are almost certainly key contributors to atmospheric new particle formation and a way to efficiently incorporate carboxylic acids into atmospheric nanoparticles. Better prediction of aerosol formation can help curb air pollution and reduce uncertainties concerning climate change.
Published New discoveries about the nature of light could improve methods for heating fusion plasma



Scientists have made discoveries about light particles known as photons that could aid the quest for fusion energy.
Published Ancient people hunted extinct elephants at Tagua Tagua Lake in Chile 12,000 years ago



Thousands of years ago, early hunter-gatherers returned regularly to Tagua Tagua Lake in Chile to hunt ancient elephants and take advantage of other local resources, according to a new study.
Published 3,500-year-old Mycenaean armor was suitable for extended battle



A 3,500-year-old suit of Mycenaean armour may have been used in battle -- and not just for ceremonial purposes as previously thought -- new research reveals.
Published Excavation reveals 'major' ancient migration to Timor Island



The discovery of thousands of stone artefacts and animal bones in a deep cave in Timor Island has led archaeologists to reassess the route that early humans took to reach Australia. Researchers dated and analysed the artefacts and sediment at the Laili rock shelter in central-north Timor-Leste, north of Australia, to pinpoint the arrival of the colonists.
Published New crystal production method could enhance quantum computers and electronics



Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.
Published Enhancing superconductivity of graphene-calcium superconductors



Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.
Published Pagan-Christian trade networks supplied horses from overseas for the last horse sacrifices in Europe



Horses crossed the Baltic Sea in ships during the Late Viking Age and were sacrificed for funeral rituals. Studies on the remains of horses found at ancient burial sites in Russia and Lithuania show that they were brought overseas from Scandinavia utilizing expansive trade networks connecting the Viking world with the Byzantine and Arab Empires. Up to now, researchers had believed sacrificial horses were always locally-sourced stallions. But these results reveal horses from modern Sweden or Finland traveled up to 1,500 km across the Baltic Sea. The findings also show that the sex of the horse was not necessarily a factor in them being chosen for sacrifice, with genetic analysis showing one in three were mares.
Published Magnetic imprint on deconfined nuclear matter



Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.
Published Early arrival and expansion of palaeolithic people on Cyprus



The patterns of dispersal of early humans across continents and islands are hotly debated, but researchers have found that Pleistocene hunter-gatherers settled in Cyprus thousands of years earlier than previously thought. In examining the timing of the first human occupation of Cyprus, research found that large islands in the Mediterranean Sea were attractive and favorable destinations for palaeolithic peoples. These findings refute previous studies that suggested Mediterranean islands would have been unreachable and inhospitable for Pleistocene hunter-gatherer societies.
Published A simple quantum internet with significant possibilities



It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.
Published Scientists create an 'optical conveyor belt' for quasiparticles



Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.
Published Speedy, secure, sustainable -- that's the future of telecom



A new device that can process information using a small amount of light could enable energy-efficient and secure communications.
Published Origin of Roman lead



Three ingots from the site of Los Escoriales de Do a Rama (Belmez) and dating from the Roman era demonstrate the importance of lead production and exportation in northern Cordoba.
Published Experiment opens door for millions of qubits on one chip



Researchers have achieved the first controllable interaction between two hole spin qubits in a conventional silicon transistor. The breakthrough opens up the possibility of integrating millions of these qubits on a single chip using mature manufacturing processes.
Published New quantum sensing scheme could lead to enhanced high-precision nanoscopic techniques



Researchers have unveiled a quantum sensing scheme that achieves the pinnacle of quantum sensitivity in measuring the transverse displacement between two interfering photons.