Showing 20 articles starting at article 381
< Previous 20 articles Next 20 articles >
Categories: Archaeology: General, Physics: Quantum Physics
Published Ancient Amazonians intentionally created fertile 'dark earth'



A new study suggests patches of fertile soil in the Amazon, known as dark earth, were intentionally produced by ancient Amazonians as a way to improve the soil and sustain large and complex societies.
Published Archaeologists discover world's oldest wooden structure



Half a million years ago, earlier than was previously thought possible, humans were building structures made of wood, according to new research.
Published Buried ancient Roman glass formed substance with modern applications



Researchers discover how molecules in ancient glass rearrange and recombine with minerals over centuries to form a patina of photonic crystals -- ordered arrangements of atoms that filter and reflect light in very specific ways -- an analog of materials used in communications, lasers and solar cells.
Published New clues to the nature of elusive dark matter


A team of international researchers has uncovered further clues in the quest for insights into the nature of dark matter. The key to understanding this mystery could lie with the dark photon, a theoretical massive particle that may serve as a portal between the dark sector of particles and regular matter.
Published How just one set of animal tracks can provide a wealth of information



Rock faces in Namibia are decorated with hundreds of stone-age images not only of animals and human footprints, but also of animal tracks. These have been largely neglected to date as researchers lacked the knowledge required to interpret them. Archaeologists have now worked together with animal tracking experts to investigate the engraved animal tracks on six rock faces in more detail, and were able to determine detailed information on the species, age, sex, limbs, side of the body, trackway and relative direction of the tracks.
Published Shipboard cannon found off the Swedish coast may be the oldest in Europe



Maritime archaeologists have studied what might be Europe's oldest shipboard cannon. The cannon was found in the sea off Marstrand on the Swedish west coast and dates back to the 14th century. The findings from the interdisciplinary study contribute new knowledge about the early development of artillery on land and at sea, but also bears witness to a troubled period for seafarers as well as coastal populations.
Published Researchers detail how disorder alters quantum spin liquids, forming a new phase of matter


Physicists begin to shed light on one of the most important questions regarding quantum spin liquids, and they do so by introducing a new phase of matter.
Published Researchers make a significant step towards reliably processing quantum information


Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.
Published Archaeologists reveal largest palaeolithic cave art site in Eastern Iberia



Archaeologists have discovered a major Palaeolithic cave art site, arguably the most important found on the Eastern Iberian Coast in Europe.
Published St Helena's 'liberated' Africans came from West Central Africa between northern Angola and Gabon



Between 1840 and 1867, thousands of enslaved Africans who had been 'liberated' from slave ships intercepted by the British Royal Navy were taken to the South Atlantic island of St Helena. But little is written in history books or otherwise known about the lives of these individuals. Now, ancient DNA analyses offer the first direct evidence for the origins of St Helena's liberated Africans.
Published Machine learning contributes to better quantum error correction


Researchers have used machine learning to perform error correction for quantum computers -- a crucial step for making these devices practical -- using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.
Published Atomically-precise quantum antidots via vacancy self-assembly


Scientists demonstrated a conceptual breakthrough by fabricating atomically precise quantum antidots using self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.
Published Deriving the fundamental limit of heat current in quantum mechanical many-particle systems


Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.
Published Better cybersecurity with new material


Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.
Published The scent of the afterlife unbottled in new study of ancient Egyptian mummification balms



A team of researchers has recreated one of the scents used in the mummification of an important Egyptian woman more than 3500 years ago.
Published Taking photoclick chemistry to the next level


Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.
Published A simpler way to connect quantum computers


Researchers have developed a new approach to building quantum repeaters, devices that can link quantum computers over long distances. The new system transmits low-loss signals over optical fiber using light in the telecom band, a longstanding goal in the march toward robust quantum communication networks.
Published Paving the way for advanced quantum sensors


Quantum physics has allowed for the creation of sensors far surpassing the precision of classical devices. Now, several new studies show that the precision of these quantum sensors can be significantly improved using entanglement produced by finite-range interactions. Researchers were able to demonstrate this enhancement using entangled ion-chains with up to 51 particles.
Published Hotter quantum systems can cool faster than initially colder equivalents


The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.
Published Graphene: Perfection is futile


It has long been known that graphene has excellent electronic properties. However, it was unclear until now how stable these properties are. Are they destroyed by disturbances and additional effects, which are unavoidable in practice, or do they remain intact? Scientists have now succeeded in developing a comprehensive computer model of realistic graphene structures. It turned out that the desired effects are very stable. Even graphene pieces that are not quite perfect can be used well for technological applications.