Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Paleontology: Early Mammals and Birds, Physics: Quantum Physics
Published Scientists closer to solving mysteries of universe after measuring gravity in quantum world



Scientists are closer to unravelling the mysterious forces of the universe after working out how to measure gravity on a microscopic level. Experts have never fully understood how the force works in the tiny quantum world -- but now physicists have successfully detected a weak gravitational pull on a tiny particle using a new technique.
Published Measuring the properties of light: Scientists realize new method for determining quantum states



Scientists have used a new method to determine the characteristics of optical, i.e. light-based, quantum states. For the first time, they are using certain photon detectors -- devices that can detect individual light particles -- for so-called homodyne detection. The ability to characterize optical quantum states makes the method an essential tool for quantum information processing.
Published Killer instinct drove evolution of mammals' predatory ancestors



The evolutionary success of the first large predators on land was driven by their need to improve as killers, researchers suggest.
Published Physicists discover a quantum state with a new type of emergent particles: Six-flux composite fermions



Physicists have reported a new fractional quantum Hall state that is very different from all other known fractional states and will invoke the existence of a new type of emergent particle, which they are calling six-flux composite fermions.
Published Revolutionary breakthrough in solar energy: Most efficient QD solar cells



A research team has unveiled a novel ligand exchange technique that enables the synthesis of organic cation-based perovskite quantum dots (PQDs), ensuring exceptional stability while suppressing internal defects in the photoactive layer of solar cells.
Published Electrons become fractions of themselves in graphene



Physicists have observed fractional quantum Hall effect in simple pentalayer graphene. The finding could make it easier to develop more robust quantum computers.
Published Engineers achieve breakthrough in quantum sensing



A collaborative project has made a breakthrough in enhancing the speed and resolution of wide-field quantum sensing, leading to new opportunities in scientific research and practical applications.
Published Panama Canal expansion rewrites history of world's most ecologically diverse bats



In a new study, paleontologists describe the oldest-known leaf-nosed bat fossils, which were found along the banks of the Panama Canal. They're also the oldest bat fossils from Central America, preserved 20-million years ago when Panama and the rest of North America were separated from southern landmass by a seaway at least 120 miles wide.
Published A star like a Matryoshka doll: New theory for gravastars



If gravitational condensate stars (or gravastars) actually existed, they would look similar to black holes to a distant observer. Two theoretical physicists have now found a new solution to Albert Einstein's theory of general relativity, according to which gravitational stars could be structured like a Russian matryoshka doll, with one gravastar located inside another.
Published Fundamental equation for superconducting quantum bits revised



Physicists have uncovered that Josephson tunnel junctions -- the fundamental building blocks of superconducting quantum computers -- are more complex than previously thought. Just like overtones in a musical instrument, harmonics are superimposed on the fundamental mode. As a consequence, corrections may lead to quantum bits that are 2 to 7 times more stable. The researchers support their findings with experimental evidence from multiple laboratories across the globe.
Published A 'quantum leap' at room temperature



Scientists have achieved a milestone by controlling quantum phenomena at room temperature.
Published Astronomy observation instrument used to uncover internal structure of atomic nuclei



Researchers have used equipment originally intended for astronomy observation to capture transformations in the nuclear structure of atomic nuclei, reports a new study.
Published Archaeologists discover oldest known bead in the Americas



The bead found at the La Prele Mammoth site in Wyoming's Converse County is about 12,940 years old and made of bone from a hare.
Published The hidden rule for flight feathers -- and how it could reveal which dinosaurs could fly



Scientists examined hundreds of birds in museum collections and discovered a suite of feather characteristics that all flying birds have in common. These 'rules' provide clues as to how the dinosaur ancestors of modern birds first evolved the ability to fly, and which dinosaurs were capable of flight.
Published How electron spectroscopy measures exciton 'holes'



Semiconductors are ubiquitous in modern technology, working to either enable or prevent the flow of electricity. In order to understand the potential of two-dimensional semiconductors for future computer and photovoltaic technologies, researchers investigated the bond that builds between the electrons and holes contained in these materials. By using a special method to break up the bond between electrons and holes, they were able to gain a microscopic insight into charge transfer processes across a semiconductor interface.
Published Technique could improve the sensitivity of quantum sensing devices



A new technique can control a larger number of microscopic defects in a diamond. These defects can be used as qubits for quantum sensing applications, and being able to control a greater number of qubits would improve the sensitivity of such devices.
Published Physicists capture the first sounds of heat 'sloshing' in a superfluid



For the first time, physicists have captured direct images of 'second sound,' the movement of heat sloshing back and forth within a superfluid. The results will expand scientists' understanding of heat flow in superconductors and neutron stars.
Published Combining materials may support unique superconductivity for quantum computing



A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing.
Published Structural isomerization of individual molecules using a scanning tunneling microscope probe



An international research team has succeeded in controlling the chirality of individual molecules through structural isomerization. The team also succeeded in synthesizing highly reactive diradicals with two unpaired electrons. These achievements were made using a scanning tunneling microscope probe at low temperatures.
Published Direct view of tantalum oxidation that impedes qubit coherence



Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.