Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Paleontology: Fossils, Physics: Quantum Physics
Published Rock, paper, scissors: Searching for stronger nonlocality using quantum computers



In the quantum world particles can instantaneously know about each other's state, even when separated by large distances. This is known as nonlocality. Now, A research group has produced some interesting findings on the Hardy nonlocality that have important ramifications for understanding quantum mechanics and its potential applications in communications.
Published Long-distance quantum teleportation enabled by multiplexed quantum memories



Researchers report having achieved quantum teleportation from a photon to a solid-state qubit over a distance of 1km, with a novel approach using multiplexed quantum memories.
Published A team creates 'quantum composites' for various electrical and optical innovations



A team has shown in the laboratory the unique and practical function of newly created materials, which they called quantum composites, that may advance electrical, optical, and computer technologies.
Published Physicists find unusual waves in nickel-based magnet



Perturbing electron spins in a magnet usually results in excitations called 'spin waves' that ripple through the magnet like waves moving across the surface of a pond that's been struck by a pebble. Physicists have now discovered dramatically different excitations called 'spin excitons' that can also 'ripple' through a nickel-based magnet as a coherent wave.
Published Quantum liquid becomes solid when heated



Solids can be melted by heating, but in the quantum world it can also be the other way around: An experimental team has shown how a quantum liquid forms supersolid structures by heating. The scientists obtained a first phase diagram for a supersolid at finite temperature.
Published Teasing strange matter from the ordinary



In a unique analysis of experimental data, nuclear physicists have made observations of how lambda particles, so-called 'strange matter,' are produced by a specific process called semi-inclusive deep inelastic scattering (SIDIS). What's more, these data hint that the building blocks of protons, quarks and gluons, are capable of marching through the atomic nucleus in pairs called diquarks, at least part of the time.
Published Nullarbor rocks reveal Australia's transformation from lush to dust



Researchers have discovered how long ago the Australian Nullarbor plain dried out, with a new approach shedding light on how ancient climate change altered some of the driest regions of our planet.
Published Physicists discover transformable nano-scale electronic devices



The nano-scale electronic parts in devices like smartphones are solid, static objects that once designed and built cannot transform into anything else. But physicists have reported the discovery of nano-scale devices that can transform into many different shapes and sizes even though they exist in solid states.
Published Fossils reveal the long-term relationship between feathered dinosaurs and feather-feeding beetles



New fossils in amber have revealed that beetles fed on the feathers of dinosaurs about 105 million years ago, showing a symbiotic relationship of one-sided or mutual benefit.
Published New details of Tully monster revealed



For more than half a century, the Tully monster (Tullimonstrum gregarium), an enigmatic animal that lived about 300 million years ago, has confounded paleontologists, with its strange anatomy making it difficult to classify. Recently, a group of researchers proposed a hypothesis that Tullimonstrum was a vertebrate similar to cyclostomes (jawless fish like lamprey and hagfish). If it was, then the Tully monster would potentially fill a gap in the evolutionary history of early vertebrates. Studies so far have both supported and rejected this hypothesis. Now, using 3D imaging technology, a team in Japan believes it has found the answer after uncovering detailed characteristics of the Tully monster which strongly suggest that it was not a vertebrate. However, its exact classification and what type of invertebrate it was is still to be decided.
Published How can a pollinating insect be recognized in the fossil record?



Insect pollination is a decisive process for the survival and evolution of angiosperm (flowering) plants and, to a lesser extent, gymnosperms (without visible flower or fruit). There is a growing interest in studies on the origins of the relationship between insects and plants, especially in the current context of the progressive decline of pollinating insects on a global scale and its impact on food production. Pollinating insects can be recognized in the fossil record, although to date, there has been no protocol for their differentiation. Fossil pollinators have been found in both rock and amber deposits, and it is in rock deposits that the first evidence of plant pollination by insects is being studied across the globe. But how can we determine which was a true insect pollinator in the past?
Published Learning about what happens to ecology, evolution, and biodiversity in times of mass extinction



Studying mass extinction events from the past can build our understanding of how ecosystems and the communities of organisms within them respond. Researchers are looking to the Late Devonian mass extinction which happened around 370 million years ago to better understand how communities of organisms respond in times of great upheaval.
Published Laser light hybrids control giant currents at ultrafast times



The flow of matter, from macroscopic water currents to the microscopic flow of electric charge, underpins much of the infrastructure of modern times. In the search for breakthroughs in energy efficiency, data storage capacity, and processing speed, scientists search for ways in which to control the flow of quantum aspects of matter such as the 'spin' of an electron -- its magnetic moment -- or its 'valley state', a novel quantum aspect of matter found in many two dimensional materials. A team of researchers has recently discovered a route to induce and control the flow of spin and valley currents at ultrafast times with specially designed laser pulses, offering a new perspective on the ongoing search for the next generation of information technologies.
Published Professor unearths the ancient fossil plant history of Burnaby Mountain



New research led by a paleobotanist provides clues about what plants existed in the Burnaby Mountain area (British Columbia, Canada) 40 million years ago during the late Eocene, when the climate was much warmer than it is today.
Published Apes may have evolved upright stature for leaves, not fruit, in open woodland habitats



Anthropologists have long thought that our ape ancestors evolved an upright torso in order to pick fruit in forests, but new research from the University of Michigan suggests a life in open woodlands and a diet that included leaves drove apes' upright stature.
Published Oldest bat skeletons ever found described from Wyoming fossils



Scientists have described a new species of bat based on the oldest bat skeletons ever recovered. The study on the extinct bat, which lived in Wyoming about 52 million years ago, supports the idea that bats diversified rapidly on multiple continents during this time.
Published Starting small and simple -- key to success for evolution of mammals



The ancestors of modern mammals managed to evolve into one of the most successful animal lineages -- the key was to start out small and simple, a new study reveals.
Published Backscattering protection in integrated photonics is impossible with existing technologies



Researchers raise fundamental questions about the proposed value of topological protection against backscattering in integrated photonics.
Published Better understanding the physics of our universe



Researchers from around the world have sought to answer important questions about the most basic laws of physics that govern our universe. Their experiment, the Majorana Demonstrator, has helped to push the horizons on research concerning one of the fundamental building blocks of the universe: neutrinos.
Published How to see the invisible: Using the dark matter distribution to test our cosmological model



Astrophysicists have measured a value for the 'clumpiness' of the universe's dark matter (known to cosmologists as 'S8') of 0.776, which does not align with the value derived from the Cosmic Microwave Background, which dates back to the universe's origins. This has intriguing implications for the standard cosmological model.