Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Space, Physics: Quantum Physics
Published Perfecting the view on a crystal's imperfection



Hexagonal boron nitride (hBN) has gained widespread attention and application across various quantum fields and technologies because it contains single-photon emmiters (SPEs), along with a layered structure that is easy to manipulation. The precise mechanisms governing the development and function of SPEs within hBN have remained elusive. Now, a new study reveals significant insights into the properties of hBN, offering a solution to discrepancies in previous research on the proposed origins of SPEs within the material.
Published To find life in the universe, look to deadly Venus



Despite surface temperatures hot enough to melt lead, lava-spewing volcanoes, and puffy clouds of sulfuric acid, uninhabitable Venus offers vital lessons about the potential for life on other planets, a new paper argues.
Published Giant galactic explosion exposes galaxy pollution in action



Astronomers have produced the first high-resolution map of a massive explosion in a nearby galaxy, providing important clues on how the space between galaxies is polluted with chemical elements.
Published AI and physics combine to reveal the 3D structure of a flare erupting around a black hole



Based on radio telescope data and models of black hole physics, a team has used neural networks to reconstruct a 3D image that shows how explosive flare-ups in the disk of gas around our supermassive black hole might look.
Published New beta-decay measurements in mirror nuclei pin down the weak nuclear force



Scientists have gained insights into the weak nuclear force from new, more sensitive studies of the beta decays of the 'mirror' nuclei lithium-8 and boron-8. The weak nuclear force drives the process of nuclear beta decay. The research found that the properties of the beta decays of lithium-8 and boron-8 are in perfect agreement with the predictions of the Standard Model.
Published Compact quantum light processing



An international collaboration of researchers has achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.
Published Astronomers uncover methane emission on a cold brown dwarf



Astronomers have discovered methane emission on a brown dwarf, an unexpected finding for such a cold and isolated world. The findings suggest that this brown dwarf might generate aurorae similar to those seen on our own planet as well as on Jupiter and Saturn.
Published 'Tube map' around planets and moons made possible by knot theory



Scientists have developed a new method using knot theory to find the optimal routes for future space missions without the need to waste fuel.
Published Most massive stellar black hole in our galaxy found



Astronomers have identified the most massive stellar black hole yet discovered in the Milky Way galaxy. This black hole was spotted in data from the European Space Agency's Gaia mission because it imposes an odd 'wobbling' motion on the companion star orbiting it. Astronomers have verified the mass of the black hole, putting it at an impressive 33 times that of the Sun.
Published Crucial connection for 'quantum internet' made for the first time



Researchers have produced, stored, and retrieved quantum information for the first time, a critical step in quantum networking.
Published How Pluto got its heart



The mystery of how Pluto got a giant heart-shaped feature on its surface has finally been solved by an international team of astrophysicists. The team is the first to successfully reproduce the unusual shape with numerical simulations, attributing it to a giant and slow oblique-angle impact.
Published Quantum precision: A new kind of resistor



Researchers have developed a method that can improve the performance of quantum resistance standards. It's based on a quantum phenomenon called Quantum Anomalous Hall effect.
Published Brightest gamma-ray burst of all time came from the collapse of a massive star



In 2022, astronomers discovered the brightest gamma-ray burst (GRB) of all time. Now, astronomers confirm that a 'normal' supernova, the telltale sign of a stellar collapse, accompanied the GRB. The team also looked for signatures of heavy elements like gold and platinum in the supernova. They found no evidence of such elements, deepening the mystery of their origins.
Published Stellar winds of three sun-like stars detected for the first time



An international research team has for the first time directly detected stellar winds from three Sun-like stars by recording the X-ray emission from their astrospheres, and placed constraints on the mass loss rate of the stars via their stellar winds.
Published Beautiful nebula, violent history: Clash of stars solves stellar mystery



When astronomers looked at a stellar pair at the heart of a stunning cloud of gas and dust, they were in for a surprise. Star pairs are typically very similar, like twins, but in HD 148937, one star appears younger and, unlike the other, is magnetic. New data suggest there were originally three stars in the system, until two of them clashed and merged. This violent event created the surrounding cloud and forever altered the system's fate.
Published Twinkle twinkle baby star, 'sneezes' tell us how you are



Researchers have found that baby stars discharge plumes of gas, dust, and magnetic flux from their protostellar disk. The protostellar disk that surrounds developing stars are constantly penetrated by magnetic flux, and if too much magnetic flux remained, the resulting object would generate a magnetic field stronger than any observed protostar. These newly discovered discharges of magnetic flux, or 'sneezes' as the researchers describes them, may be a vital step in proper star formation.
Published The hidden role of the Milky Way in ancient Egyptian mythology



Astrophysicists shed light on the relationship between the Milky Way and the Egyptian sky-goddess Nut. The paper draws on ancient Egyptian texts and simulations to argue that the Milky Way might have shone a spotlight, as it were, on Nut's role as the sky. It proposes that in winter, the Milky Way highlighted Nut's outstretched arms, while in summer, it traced her backbone across the heavens.
Published Quantum breakthrough when light makes materials magnetic



The potential of quantum technology is huge but is today largely limited to the extremely cold environments of laboratories. Now, researchers have succeeded in demonstrating for the very first time how laser light can induce quantum behavior at room temperature -- and make non-magnetic materials magnetic. The breakthrough is expected to pave the way for faster and more energy-efficient computers, information transfer and data storage.
Published New method of measuring qubits promises ease of scalability in a microscopic package



The path to quantum supremacy is made challenging by the issues associated with scaling up the number of qubits. One key problem is the way that qubits are measured. A research group introduces a new approach that tackles these challenges head-on using nanobolometers instead of traditional, bulky parametric amplifiers.
Published New technique lets scientists create resistance-free electron channels



A team has taken the first atomic-resolution images and demonstrated electrical control of a chiral interface state -- an exotic quantum phenomenon that could help researchers advance quantum computing and energy-efficient electronics.