Showing 20 articles starting at article 41

< Previous 20 articles        Next 20 articles >

Categories: Offbeat: Space, Physics: Quantum Physics

Return to the site home page

Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

What no one has seen before -- simulation of gravitational waves from failing warp drive      (via sciencedaily.com)     Original source 

Physicists have been exploring the theoretical possibility of spaceships driven by compressing the four-dimensional spacetime for decades. Although this so-called 'warp drive' originates from the realm of science fiction, it is based on concrete descriptions in general relativity. A new study takes things a step further -- simulating the gravitational waves such a drive might emit if it broke down.

Chemistry: Biochemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breaking new ground for computing technologies with electron-hole crystals      (via sciencedaily.com)     Original source 

A team developed a novel method to successfully visualise electron-hole crystals in an exotic quantum material. Their breakthrough could pave the way for new advancements in computing technologies, including in-memory and quantum computing.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

The corona is weirdly hot: Parker Solar Probe rules out one explanation      (via sciencedaily.com)     Original source 

By diving into the sun's corona, NASA's Parker Solar Probe has ruled out S-shaped bends in the sun's magnetic field as a cause of the corona's searing temperatures.

Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Optical fibers fit for the age of quantum computing      (via sciencedaily.com)     Original source 

A new generation of specialty optical fibers has been developed by physicists to cope with the challenges of data transfer expected to arise in the future age of quantum computing.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Atomic 'GPS' elucidates movement during ultrafast material transitions      (via sciencedaily.com)     Original source 

Scientists have created the first-ever atomic movies showing how atoms rearrange locally within a quantum material as it transitions from an insulator to a metal. With the help of these movies, the researchers discovered a new material phase that settles a years-long scientific debate and could facilitate the design of new transitioning materials with commercial applications.

Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Kink state' control may provide pathway to quantum electronics      (via sciencedaily.com)     Original source 

The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum sensor for the atomic world      (via sciencedaily.com)     Original source 

In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.

Chemistry: Biochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nonreciprocal interactions go nonlinear      (via sciencedaily.com)     Original source 

Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so called non-conservative interactions.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Spin qubits go trampolining      (via sciencedaily.com)     Original source 

Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

Dark matter flies ahead of normal matter in mega galaxy cluster collision      (via sciencedaily.com)     Original source 

Astronomers have untangled a messy collision between two massive clusters of galaxies in which the clusters' vast clouds of dark matter have decoupled from the so-called normal matter.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Images of nearest 'super-Jupiter' open a new window to exoplanet research      (via sciencedaily.com)     Original source 

Using the James Webb Space Telescope (JWST), astronomers imaged a new exoplanet that orbits a star in the nearby triple system Epsilon Indi. The planet is a cold super-Jupiter exhibiting a temperature of around 0 degrees Celsius and a wide orbit comparable to that of Neptune around the Sun. This measurement was only possible thanks to JWST's unprecedented imaging capabilities in the thermal infrared. It exemplifies the potential of finding many more such planets similar to Jupiter in mass, temperature, and orbit. Studying them will improve our knowledge of how gas giants form and evolve in time.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

Expiring medications could pose challenge on long space missions      (via sciencedaily.com)     Original source 

A new study shows that over half of the medicines stocked in space -- staples such as pain relievers, antibiotics, allergy medicines, and sleep aids -- would expire before astronauts could return to Earth.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features Space: The Solar System
Published

Astrophysicists uncover supermassive blackhole/dark matter connection in solving the 'final parsec problem'      (via sciencedaily.com)     Original source 

Researchers have found a link between some of the largest and smallest objects in the cosmos: supermassive black holes and dark matter particles. Their new calculations reveal that pairs of supermassive black holes (SMBHs) can merge into a single larger black hole because of previously overlooked behavior of dark matter particles, proposing a solution to the longstanding 'final parsec problem' in astronomy.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Life signs could survive near surfaces of Enceladus and Europa      (via sciencedaily.com)     Original source 

Europa and Enceladus, icy moons of Jupiter and Saturn respectively, have evidence of oceans beneath their crusts. A NASA experiment suggests -- if these oceans support life -- signatures of that life in the form of organic molecules (like amino acids and nucleic acids) could survive just under the surface ice despite the harsh, ionizing radiation on these worlds. If robotic landers were to go to these moons to look for life signs, they would not have to dig very deep to find amino acids that have survived being altered or destroyed by radiation.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Another intermediate-mass black hole discovered at the center of our galaxy      (via sciencedaily.com)     Original source 

So far, only about ten intermediate-mass black holes have been discovered in the entire universe. The newly identified black hole causes surrounding stars in a cluster to move in an unexpectedly orderly way.

Offbeat: Computers and Math Offbeat: General Offbeat: Space Space: Astrophysics Space: General Space: Structures and Features
Published

Want to spot a deepfake? Look for the stars in their eyes      (via sciencedaily.com)     Original source 

In an era when the creation of artificial intelligence (AI) images is at the fingertips of the masses, the ability to detect fake pictures -- particularly deepfakes of people -- is becoming increasingly important. So what if you could tell just by looking into someone's eyes? That's the compelling finding of new research which suggests that AI-generated fakes can be spotted by analyzing human eyes in the same way that astronomers study pictures of galaxies.

Physics: General Physics: Quantum Physics
Published

Powerful new particle accelerator a step closer with muon-marshalling technology      (via sciencedaily.com)     Original source 

New experimental results show particles called muons can be corralled into beams suitable for high-energy collisions, paving the way for new physics.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists develop new theory describing the energy landscape formed when quantum particles gather together      (via sciencedaily.com)     Original source 

An international team of physicists has proven new theorems in quantum mechanics that describe the 'energy landscapes' of collections of quantum particles. Their work addresses decades-old questions, opening up new routes to make computer simulation of materials much more accurate. This, in turn, may help scientists design a suite of materials that could revolutionize green technologies.