Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Computers and Math, Physics: Quantum Physics
Published Theory and experiment combine to shine a new light on proton spin



Nuclear physicists have long been working to reveal how the proton gets its spin. Now, a new method that combines experimental data with state-of-the-art calculations has revealed a more detailed picture of spin contributions from the very glue that holds protons together.
Published More than spins: Exploring uncharted territory in quantum devices



Many of today's quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the '0' and the '1'. However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. Researchers now demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.
Published Imperceptible sensors made from 'electronic spider silk' can be printed directly on human skin



Researchers have developed a method to make adaptive and eco-friendly sensors that can be directly and imperceptibly printed onto a wide range of biological surfaces, whether that's a finger or a flower petal.
Published How a tiny device could lead to big physics discoveries and better lasers



Researchers have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.
Published Shedding light on the chemical enigma of sulfur trioxide in the atmosphere



Researchers discovered that sulfur trioxide can form products other than sulfuric acid in the atmosphere by interacting with organic and inorganic acids. These previously uncharacterized acid sulfuric anhydride products are almost certainly key contributors to atmospheric new particle formation and a way to efficiently incorporate carboxylic acids into atmospheric nanoparticles. Better prediction of aerosol formation can help curb air pollution and reduce uncertainties concerning climate change.
Published New discoveries about the nature of light could improve methods for heating fusion plasma



Scientists have made discoveries about light particles known as photons that could aid the quest for fusion energy.
Published New AI accurately predicts fly behavior



Researchers trained an AI model to accurately predict male fruit flies' courtship behavior in response to any sight of a female. This breakthrough offers new insight into how the brain processes visual data and may someday pave the way for artificial vision technology.
Published New crystal production method could enhance quantum computers and electronics



Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.
Published 3D printing robot creates extreme shock-absorbing shape, with help of AI



See how an autonomous robot created a shock-absorbing shape no human ever could -- and what it means for designing safer helmets, packaging, car bumpers, and more.
Published Enhancing superconductivity of graphene-calcium superconductors



Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.
Published 2D materials: A catalyst for future quantum technologies



Researchers have discovered that a 'single atomic defect' in a layered 2D material can hold onto quantum information for microseconds at room temperature. This underscores the broader potential of 2D materials in advancing quantum technologies.
Published Physicists propose path to faster, more flexible robots



Physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery.
Published World's smallest quantum light detector on a silicon chip



Researchers have made an important breakthrough in scaling quantum technology by integrating the world's tiniest quantum light detector onto a silicon chip.
Published Magnetic imprint on deconfined nuclear matter



Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.
Published Diamond glitter: A play of colors with artificial DNA crystals



Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.
Published Building a better sarcasm detector



Sarcasm is notoriously tricky to convey through text, and the subtle changes in tone that convey sarcasm often confuse computer algorithms as well, limiting virtual assistants and content analysis tools. So researchers have now developed a multimodal algorithm for improved sarcasm detection that examines multiple aspects of audio recordings for increased accuracy. They used two complementary approaches -- sentiment analysis using text and emotion recognition using audio -- for a more complete picture.
Published Jet-propelled sea creatures could improve ocean robotics



Scientists have discovered that colonies of gelatinous sea animals swim through the ocean in giant corkscrew shapes using coordinated jet propulsion, an unusual kind of locomotion that could inspire new designs for efficient underwater vehicles.
Published Robotic 'SuperLimbs' could help moonwalkers recover from falls



SuperLimbs, a system of wearable robotic limbs, can physically support an astronaut and lift them back on their feet after a fall, helping them conserve energy for other essential tasks.
Published Wavefunction matching for solving quantum many-body problems



Strongly interacting systems play an important role in quantum physics and quantum chemistry. Stochastic methods such as Monte Carlo simulations are a proven method for investigating such systems. However, these methods reach their limits when so-called sign oscillations occur. This problem has now been solved using the new method of wavefunction matching.
Published Animal brain inspired AI game changer for autonomous robots



A team of researchers has developed a drone that flies autonomously using neuromorphic image processing and control based on the workings of animal brains. Animal brains use less data and energy compared to current deep neural networks running on GPUs (graphic chips). Neuromorphic processors are therefore very suitable for small drones because they don't need heavy and large hardware and batteries. The results are extraordinary: during flight the drone's deep neural network processes data up to 64 times faster and consumes three times less energy than when running on a GPU. Further developments of this technology may enable the leap for drones to become as small, agile, and smart as flying insects or birds.