Showing 20 articles starting at article 681
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Computers and Math, Physics: Quantum Physics
Published Mix-and-match kit could enable astronauts to build a menagerie of lunar exploration bots


The Walking Oligomeric Robotic Mobility System, or WORMS, is a reconfigurable, modular, multiagent robotics architecture for extreme lunar terrain mobility. The system could be used to assemble autonomous worm-like parts into larger biomimetic robots that could explore lava tubes, steep slopes, and the moon's permanently shadowed regions.
Published STAR physicists track sequential 'melting' of upsilons


Scientists using the Relativistic Heavy Ion Collider (RHIC) to study some of the hottest matter ever created in a laboratory have published their first data showing how three distinct variations of particles called upsilons sequentially 'melt,' or dissociate, in the hot goo.
Published Magnetism fosters unusual electronic order in quantum material


Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.
Published Experiment unlocks bizarre properties of strange metals


Physicists are learning more about the bizarre behavior of 'strange metals,' which operate outside the normal rules of electricity.
Published Ringing an electronic wave: Elusive massive phason observed in a charge density wave


Researchers have detected the existence of a charge density wave of electrons that acquires mass as it interacts with the background lattice ions of the material over long distances.
Published Virtual reality games can be used as a tool in personnel assessment


Fast gamers are more intelligent: Intelligence can be predicted through virtual reality games.
Published In the world's smallest ball game, scientists throw and catch single atoms using light


Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.
Published Researchers unveil smart contact lens, capable of implementing AR-based navigation


A research team has introduced core technology for smart contact lenses that can implement AR-based navigation through a 3D printing process.
Published Hitting nuclei with light may create fluid primordial matter


A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.
Published Researchers take a step towards turning interactions that normally ruin quantum information into a way of protecting it


A new method for predicting the behavior of quantum devices provides a crucial tool for real-world applications of quantum technology.
Published Viable superconducting material created, say researchers


Researchers report the creation of a superconducting material at both a temperature and pressure low enough for practical applications. In a new paper, the researchers describe a nitrogen-doped lutetium hydride that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.
Published New breakthrough enables perfectly secure digital communications


Researchers have achieved a breakthrough to enable 'perfectly secure' hidden communications for the first time. The method uses new advances in information theory methods to conceal one piece of content inside another in a way that cannot be detected. This may have strong implications for information security, besides further applications in data compression and storage.
Published Graphene quantum dots show promise as novel magnetic field sensors


Trapped electrons traveling in circular loops at extreme speeds inside graphene quantum dots are highly sensitive to external magnetic fields and could be used as novel magnetic field sensors with unique capabilities, according to a new study.
Published Two-dimensional quantum freeze


Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.
Published Can artificial intelligence help find life on Mars or icy worlds?


Researchers have mapped the sparse life hidden away in salt domes, rocks and crystals at Salar de Pajonales at the boundary of the Chilean Atacama Desert and Altiplano. Then they trained a machine learning model to recognize the patterns and rules associated with their distributions so it could learn to predict and find those same distributions in data on which it was not trained. In this case, by combining statistical ecology with AI/ML, the scientists could locate and detect biosignatures up to 87.5 percent of the time and decrease the area needed for search by up to 97 percent.
Published An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits


Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.
Published Destroying the superconductivity in a kagome metal


A recent study has uncovered a distinct disorder-driven superconductor-insulator transition. This first electric control of superconductivity and quantum Hall effect in a candidate material for future low-energy electronics has promise to reduce the rising, unsustainable energy cost of computing.
Published Edible electronics: How a seaweed second skin could transform health and fitness sensor tech


Scientists have developed biodegradable algae-based hydrogels for strain sensing devices -- such as those used in health monitors worn by runners and hospital patients to track heart rate -- using natural elements like rock salt, water and seaweed, combined with graphene. As well as being more environmentally friendly than polymer-based hydrogels, commonly used in health sensor technology, the graphene algae sensors perform strongly in terms of sensitivity.
Published Hansel and Gretel's breadcrumb trick inspires robotic exploration of caves on Mars and beyond


Future space missions likely will send robots to scout out underground habitats for astronauts. Engineers have now developed a system that would enable autonomous vehicles to explore caves, lava tubes and even oceans on other worlds on their own.
Published Quantum chemistry: Molecules caught tunneling


Quantum effects can play an important role in chemical reactions. Physicists have now observed a quantum mechanical tunneling reaction in experiments. The observation can also be described exactly in theory. The scientists provide an important reference for this fundamental effect in chemistry. It is the slowest reaction with charged particles ever observed.