Showing 20 articles starting at article 801

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Biochemistry, Physics: Quantum Physics

Return to the site home page

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Non-toxic quantum dots pave the way towards CMOS shortwave infrared image sensors for consumer electronics      (via sciencedaily.com)     Original source 

Researchers have fabricated a new high-performance shortwave infrared (SWIR) image sensor based on non-toxic colloidal quantum dots. They report on a new method for synthesizing functional high-quality non-toxic colloidal quantum dots integrable with complementary metal-oxide-semiconductor (CMOS) technology.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Using electricity, scientists find promising new method of boosting chemical reactions      (via sciencedaily.com)     Original source 

Chemists found a way to use electricity to boost a type of chemical reaction often used in synthesizing new candidates for pharmaceutical drugs. The research is an advance in the field of electrochemistry and shows a path forward to designing and controlling reactions -- and making them more sustainable.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

New method illuminates druggable sites on proteins      (via sciencedaily.com)     Original source 

Scientists develop a new, high-resolution technique for finding potential therapeutic targets on proteins in living cells. The findings could lead to more targeted therapeutics for nearly any human disease.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Aptamers: lifesavers; ion shields: aptamer guardians      (via sciencedaily.com)     Original source 

Aptamers, nucleic acids capable of selectively binding to viruses, proteins, ions, small molecules, and various other targets, are garnering attention in drug development as potential antibody substitutes for their thermal and chemical stability as well as ability to inhibit specific enzymes or target proteins through three-dimensional binding. They also hold promise for swift diagnoses of colon cancer and other challenging diseases by targeting elusive biomarkers. Despite their utility, these aptamers are susceptible to easy degradation by multiple enzymes, presenting a significant challenge.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General
Published

Molecules exhibit non-reciprocal interactions without external forces      (via sciencedaily.com)     Original source 

Researchers have discovered that molecules experience non-reciprocal interactions without external forces. Fundamental forces such as gravity and electromagnetism are reciprocal, where two objects are attracted to each other or are repelled by each other. In our everyday experience, however, interactions don t seem to follow this reciprocal law.

Chemistry: Biochemistry Engineering: Nanotechnology Offbeat: General
Published

Revolutionary nanodrones enable targeted cancer treatment      (via sciencedaily.com)     Original source 

A research team has unveiled a remarkable breakthrough in cancer treatment.

Engineering: Graphene Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Laser-driving a 2D material      (via sciencedaily.com)     Original source 

Engineers pair vibrating particles, called phonons, with particles of light, called photons, to enhance the nonlinear optical properties of hexagonal boron nitride.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: General Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting      (via sciencedaily.com)     Original source 

Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Are diamonds GaN's best friend? Revolutionizing transistor technology      (via sciencedaily.com)     Original source 

A research team has fabricated a gallium nitride (GaN) transistor using diamond, which of all natural materials has the highest thermal conductivity on earth, as a substrate, and they succeeded in increasing heat dissipation by more than two times compared with conventional transistors. The transistor is expected to be useful not only in the fields of 5G communication base stations, weather radar, and satellite communications, but also in microwave heating and plasma processing.

Chemistry: Biochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Unconventional magnets: Stress reduces frustration      (via sciencedaily.com)     Original source 

An international research team recently demonstrated how magnetism can be actively changed by pressure.

Chemistry: Biochemistry Computer Science: Virtual Reality (VR) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Could an electric nudge to the head help your doctor operate a surgical robot?      (via sciencedaily.com)     Original source 

People who received gentle electric currents on the back of their heads learned to maneuver a robotic surgery tool in virtual reality and then in a real setting much more easily than people who didn't receive those nudges, a new study shows.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New strategy reveals 'full chemical complexity' of quantum decoherence      (via sciencedaily.com)     Original source 

Scientists have developed a method to extract the spectral density for molecules in solvent using simple resonance Raman experiments -- a method that captures the full complexity of chemical environments.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: General
Published

Unveiling molecular origami: A breakthrough in dynamic materials      (via sciencedaily.com)     Original source 

A research team has unveiled a remarkable breakthrough in the form of a two-dimensional (2D) Metal Organic Framework (MOF) that showcases unprecedented origami-like movement at the molecular level. This pioneering study represents a significant leap forward in the field of dynamic materials, while also hinting at futuristic applications in metamaterials and quantum computing.

Biology: Biochemistry Biology: General Biology: Microbiology Chemistry: Biochemistry Physics: Optics
Published

Gentle x-ray imaging of small living specimens      (via sciencedaily.com)     Original source 

Researchers all over Germany have developed a new system for X-ray imaging, which is suited for both living specimens and sensitive materials. The system records images of micrometer resolution at a minimum radiation dose. In a pilot study, the researchers tested their method on living parasitic wasps and observed them for more than 30 minutes.

Chemistry: Biochemistry Engineering: Robotics Research Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

AI's memory-forming mechanism found to be strikingly similar to that of the brain      (via sciencedaily.com)     Original source 

An interdisciplinary team consisting of researchers has revealed a striking similarity between the memory processing of artificial intelligence (AI) models and the hippocampus of the human brain. This new finding provides a novel perspective on memory consolidation, which is a process that transforms short-term memories into long-term ones, in AI systems.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

For this emergent class of materials, 'solutions are the problem'      (via sciencedaily.com)     Original source 

Materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A promising pairing: Scientists demonstrate new combination of materials for quantum science      (via sciencedaily.com)     Original source 

For the first time, scientists publish results on a new chip composed of diamond and lithium niobate. The results demonstrate the combination as a promising candidate for quantum devices.

Chemistry: Biochemistry Computer Science: Virtual Reality (VR) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Cognitive strategies for augmenting the body with a wearable, robotic arm      (via sciencedaily.com)     Original source 

Scientists show that breathing may be used to control a wearable extra robotic arm in healthy individuals, without hindering control of other parts of the body.