Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Physics: Quantum Physics
Published Physicists capture the first sounds of heat 'sloshing' in a superfluid (via sciencedaily.com) Original source
For the first time, physicists have captured direct images of 'second sound,' the movement of heat sloshing back and forth within a superfluid. The results will expand scientists' understanding of heat flow in superconductors and neutron stars.
Published Combining materials may support unique superconductivity for quantum computing (via sciencedaily.com) Original source
A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing.
Published Structural isomerization of individual molecules using a scanning tunneling microscope probe (via sciencedaily.com) Original source
An international research team has succeeded in controlling the chirality of individual molecules through structural isomerization. The team also succeeded in synthesizing highly reactive diradicals with two unpaired electrons. These achievements were made using a scanning tunneling microscope probe at low temperatures.
Published Direct view of tantalum oxidation that impedes qubit coherence (via sciencedaily.com) Original source
Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.
Published Magnesium protects tantalum, a promising material for making qubits (via sciencedaily.com) Original source
Scientists have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. The scientists show that a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may increase tantalum's ability to hold onto quantum information in qubits.
Published A physical qubit with built-in error correction (via sciencedaily.com) Original source
Researchers have succeeded in generating a logical qubit from a single light pulse that has the inherent capacity to correct errors.
Published Physicists develop highly robust time crystal (via sciencedaily.com) Original source
Researchers recently succeeded in producing a highly durable time crystal that lived millions of times longer than could be shown in previous experiments. By doing so, they have corroborated an extremely interesting phenomenon that Nobel Prize laureate Frank Wilczek postulated around ten years ago and which had already found its way into science fiction movies.
Published Single proton illuminates perovskite nanocrystals-based transmissive thin scintillators (via sciencedaily.com) Original source
Researchers have developed a transmissive thin scintillator using perovskite nanocrystals, designed for real-time tracking and counting of single protons. The exceptional sensitivity is attributed to biexcitonic radiative emission generated through proton-induced upconversion and impact ionization.
Published Short X-ray pulses reveal the source of light-induced ferroelectricity in SrTiO3 (via sciencedaily.com) Original source
Researchers have gained new insights into the development of the light-induced ferroelectric state in SrTiO3. They exposed the material to mid-infrared and terahertz frequency laser pulses and found that the fluctuations of its atomic positions are reduced under these conditions. This may explain why the dipolar structure is more ordered than in equilibrium and why the laser pulses induce a ferroelectric state in the material.
Published Scientists make breakthrough in quantum materials research (via sciencedaily.com) Original source
Researchers describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.
Published Researchers craft new way to make high-temperature superconductors -- with a twist (via sciencedaily.com) Original source
An international team has developed a new method to make and manipulate a widely studied class of high-temperature superconductors. This technique should pave the way for the creation of unusual forms of superconductivity in previously unattainable materials.
Published Superfluids could share characteristic with common fluids (via sciencedaily.com) Original source
Every fluid -- from Earth's atmosphere to blood pumping through the human body -- has viscosity, a quantifiable characteristic describing how the fluid will deform when it encounters some other matter. If the viscosity is higher, the fluid flows calmly, a state known as laminar. If the viscosity decreases, the fluid undergoes the transition from laminar to turbulent flow. The degree of laminar or turbulent flow is referred to as the Reynolds number, which is inversely proportional to the viscosity. However, this Reynolds similitude does not apply to quantum superfluids. A researcher has theorized a way to examine the Reynolds similitude in superfluids, which could demonstrate the existence of quantum viscosity in superfluids.
Published Scientists pull off quantum coup (via sciencedaily.com) Original source
Scientists have discovered a first-of-its-kind material, a 3D crystalline metal in which quantum correlations and the geometry of the crystal structure combine to frustrate the movement of electrons and lock them in place.
Published Shining a light on the hidden properties of quantum materials (via sciencedaily.com) Original source
Certain materials have desirable properties that are hidden and scientists can use light to uncover these properties. Researchers have used an advanced optical technique, based on terahertz time-domain spectroscopy, to learn more about a quantum material called Ta2NiSe5 (TNS).
Published Researchers add a 'twist' to classical material design (via sciencedaily.com) Original source
Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.
Published What coffee with cream can teach us about quantum physics (via sciencedaily.com) Original source
A new advancement in theoretical physics could, one day, help engineers develop new kinds of computer chips that might store information for longer in very small objects.
Published Gravity helps show strong force strength in the proton (via sciencedaily.com) Original source
New research conducted by nuclear physicists is using a method that connects theories of gravitation to interactions among the smallest particles of matter. The result is insight into the strong force, a powerful mediator of particle interactions in the subatomic realm. The research has revealed, for the first time, a snapshot of the distribution of the shear strength of the strong force inside the proton -- or how strong an effort must be to overcome the strong force to move an object it holds in its grasp. At its peak, the nuclear physicists found that a force of over four metric tons would be required to overcome the binding power of the strong force.
Published Researchers find new multiphoton effect within quantum interference of light (via sciencedaily.com) Original source
An international team of researchers has disproved a previously held assumption about the impact of multiphoton components in interference effects of thermal fields (e.g. sunlight) and parametric single photons (generated in non-linear crystals).
Published New research sheds light on a phenomenon known as 'false vacuum decay' (via sciencedaily.com) Original source
Scientists have produced the first experimental evidence of vacuum decay.
Published Towards the quantum of sound (via sciencedaily.com) Original source
A team of scientists has succeeded in cooling traveling sound waves in wave-guides considerably further than has previously been possible using laser light. This achievement represents a significant move towards the ultimate goal of reaching the quantum ground state of sound in wave-guides. Unwanted noise generated by the acoustic waves at room temperature can be eliminated. This experimental approach both provides a deeper understanding of the transition from classical to quantum phenomena of sound and is relevant to quantum communication systems and future quantum technologies.