Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Physics: Quantum Physics
Published Researchers develop general framework for designing quantum sensors (via sciencedaily.com) Original source
Researchers have designed a protocol for harnessing the power of quantum sensors. The protocol could give sensor designers the ability to fine-tune quantum systems to sense signals of interest, creating sensors that are vastly more sensitive than traditional sensors.
Published What no one has seen before -- simulation of gravitational waves from failing warp drive (via sciencedaily.com) Original source
Physicists have been exploring the theoretical possibility of spaceships driven by compressing the four-dimensional spacetime for decades. Although this so-called 'warp drive' originates from the realm of science fiction, it is based on concrete descriptions in general relativity. A new study takes things a step further -- simulating the gravitational waves such a drive might emit if it broke down.
Published Breaking new ground for computing technologies with electron-hole crystals (via sciencedaily.com) Original source
A team developed a novel method to successfully visualise electron-hole crystals in an exotic quantum material. Their breakthrough could pave the way for new advancements in computing technologies, including in-memory and quantum computing.
Published Dark matter: A camera trap for the invisible (via sciencedaily.com) Original source
AI-powered image recognition could give researchers a new tool in hunt for dark matter.
Published Researchers trap atoms, forcing them to serve as photonic transistors (via sciencedaily.com) Original source
Researchers have developed a means to realize cold-atom integrated nanophotonic circuits.
Published Optical fibers fit for the age of quantum computing (via sciencedaily.com) Original source
A new generation of specialty optical fibers has been developed by physicists to cope with the challenges of data transfer expected to arise in the future age of quantum computing.
Published Atomic 'GPS' elucidates movement during ultrafast material transitions (via sciencedaily.com) Original source
Scientists have created the first-ever atomic movies showing how atoms rearrange locally within a quantum material as it transitions from an insulator to a metal. With the help of these movies, the researchers discovered a new material phase that settles a years-long scientific debate and could facilitate the design of new transitioning materials with commercial applications.
Published 'Kink state' control may provide pathway to quantum electronics (via sciencedaily.com) Original source
The key to developing quantum electronics may have a few kinks. According to researchers, that's not a bad thing when it comes to the precise control needed to fabricate and operate such devices, including advanced sensors and lasers. The researchers fabricated a switch to turn on and off the presence of kink states, which are electrical conduction pathways at the edge of semiconducting materials.
Published Quantum sensor for the atomic world (via sciencedaily.com) Original source
In a scientific breakthrough, an international research team has developed a quantum sensor capable of detecting minute magnetic fields at the atomic length scale. This pioneering work realizes a long-held dream of scientists: an MRI-like tool for quantum materials.
Published Nonreciprocal interactions go nonlinear (via sciencedaily.com) Original source
Using two optically trapped glass nanoparticles, researchers observed a novel collective Non-Hermitian and nonlinear dynamic driven by nonreciprocal interactions. This contribution expands traditional optical levitation with tweezer arrays by incorporating the so called non-conservative interactions.
Published Spin qubits go trampolining (via sciencedaily.com) Original source
Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.
Published Powerful new particle accelerator a step closer with muon-marshalling technology (via sciencedaily.com) Original source
New experimental results show particles called muons can be corralled into beams suitable for high-energy collisions, paving the way for new physics.
Published Physicists develop new theory describing the energy landscape formed when quantum particles gather together (via sciencedaily.com) Original source
An international team of physicists has proven new theorems in quantum mechanics that describe the 'energy landscapes' of collections of quantum particles. Their work addresses decades-old questions, opening up new routes to make computer simulation of materials much more accurate. This, in turn, may help scientists design a suite of materials that could revolutionize green technologies.
Published Paving the way to extremely fast, compact computer memory (via sciencedaily.com) Original source
Researchers have demonstrated that the layered multiferroic material nickel iodide (NiI2) may be the best candidate yet for devices such as magnetic computer memory that are extremely fast and compact. Specifically, they found that NiI2 has greater magnetoelectric coupling than any known material of its kind.
Published Breakthrough in quantum microscopy: Researchers are making electrons visible in slow motion (via sciencedaily.com) Original source
Physicists are developing quantum microscopy which enables them for the first time to record the movement of electrons at the atomic level with both extremely high spatial and temporal resolution. Their method has the potential to enable scientists to develop materials in a much more targeted way than before.
Published Light-induced Meissner effect (via sciencedaily.com) Original source
Researchers have developed a new experiment capable of monitoring the magnetic properties of superconductors at very fast speeds.
Published A breakthrough on the edge: One step closer to topological quantum computing (via sciencedaily.com) Original source
Researchers have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing.
Published Moving from the visible to the infrared: Developing high quality nanocrystals (via sciencedaily.com) Original source
Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published A 2D device for quantum cooling (via sciencedaily.com) Original source
Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published A genetic algorithm for phononic crystals (via sciencedaily.com) Original source
Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.