Chemistry: General Chemistry: Inorganic Chemistry Physics: General
Published

Epic of a molecular ion: With eyes of electrons      (via sciencedaily.com)     Original source 

Researchers have achieved real-time capture of the ionization process and subsequent structural changes in gas-phase molecules through an enhanced mega-electronvolt ultrafast electron diffraction (MeV-UED) technique, enabling observation of faster and finer movements of ions.

Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Observing macroscopic quantum effects in the dark      (via sciencedaily.com)     Original source 

Be fast, avoid light, and roll through a curvy ramp: This is the recipe for a pioneering experiment proposed by theoretical physicists. An object evolving in a potential created through electrostatic or magnetic forces is expected to rapidly and reliably generate a macroscopic quantum superposition state.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

How black silicon, a prized material used in solar cells, gets its dark, rough edge      (via sciencedaily.com)     Original source 

Researchers have developed a new theoretical model explaining one way to make black silicon. The new etching model precisely explains how fluorine gas breaks certain bonds in the silicon more often than others, depending on the orientation of the bond at the surface. Black silicon is an important material used in solar cells, light sensors, antibacterial surfaces and many other applications.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

The first domino falls for redox reactions      (via sciencedaily.com)     Original source 

Transmitting an effect known as a domino reaction using redox chemistry has been achieved for the first time.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers demonstrate that quantum entanglement and topology are inextricably linked      (via sciencedaily.com)     Original source 

Researchers have demonstrated the remarkable ability to perturb pairs of spatially separated yet interconnected quantum entangled particles without altering their shared properties.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists develop new approach to inserting single carbon atoms      (via sciencedaily.com)     Original source 

Chemists have presented a new approach in which a single carbon atom is inserted into the carbon skeleton of cyclic compounds in order to adjust the ring size. The method could be relevant, for example, for the production of active ingredients in new pharmaceutical products.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New study uses machine learning to bridge the reality gap in quantum devices      (via sciencedaily.com)     Original source 

A study has used the power of machine learning to overcome a key challenge affecting quantum devices. For the first time, the findings reveal a way to close the 'reality gap': the difference between predicted and observed behavior from quantum devices.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries
Published

Solid state battery design charges in minutes, lasts for thousands of cycles      (via sciencedaily.com)     Original source 

Researchers have developed a new lithium metal battery that can be charged and discharged at least 6,000 times -- more than any other pouch battery cell -- and can be recharged in a matter of minutes. The research not only describes a new way to make solid state batteries with a lithium metal anode but also offers new understanding into the materials used for these potentially revolutionary batteries.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Geochemistry
Published

Bottled water can contain hundreds of thousands of previously uncounted tiny plastic bits      (via sciencedaily.com)     Original source 

In recent years, there has been rising concern that tiny particles known as microplastics are showing up basically everywhere on Earth, from polar ice to soil, drinking water and food. Formed when plastics break down into progressively smaller bits, these particles are being consumed by humans and other creatures, with unknown potential health and ecosystem effects. One big focus of research: bottled water, which has been shown to contain tens of thousands of identifiable fragments in each container. Now, using newly refined technology, researchers have entered a whole new plastic world: the poorly known realm of nanoplastics, the spawn of microplastics that have broken down even further. For the first time, they counted and identified these minute particles in bottled water. They found that on average, a liter contained some 240,000 detectable plastic fragments -- 10 to 100 times greater than previous estimates, which were based mainly on larger sizes.

Chemistry: Inorganic Chemistry Energy: Technology Physics: General
Published

Using berry phase monopole engineering for high-temperature spintronic devices      (via sciencedaily.com)     Original source 

Spin-orbit torque (SOT), an important phenomenon for developing ultrafast and low-power spintronic devices, can be enhanced through Berry phase monopole engineering at high temperatures. In a new study, the temperature dependence of the intrinsic spin Hall effect of TaSi2 was investigated. The results suggest that Berry phase monopole engineering is an effective strategy for achieving high-temperature SOT spintronic devices.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Asbestos: The size and shape of inhaled nanofibers could be exclusively responsible for the development of pulmonary fibrosis      (via sciencedaily.com)     Original source 

The pathogenic potential of inhaling the inert fibrous nanomaterials used in thermal insulation (such as asbestos or fiberglass) is actually connected not to their chemical composition, but instead to their geometrical characteristics and size. This was revealed by a study conducted on glass nanofibers.

Biology: Biochemistry Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Offbeat: General Offbeat: Plants and Animals Physics: Optics
Published

Engineers invent octopus-inspired technology that can deceive and signal      (via sciencedaily.com)     Original source 

With a split-second muscle contraction, the greater blue-ringed octopus can change the size and color of the namesake patterns on its skin for purposes of deception, camouflage and signaling. Researchers have drawn inspiration from this natural wonder to develop a technological platform with similar capabilities for use in a variety of fields, including the military, medicine, robotics and sustainable energy.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Technology
Published

High-performance stretchable solar cells      (via sciencedaily.com)     Original source 

Engineers have succeeded in implementing a stretchable organic solar cell by applying a newly developed polymer material that demonstrated the world's highest photovoltaic conversion efficiency (19%) while functioning even when stretched for more than 40% of its original state. This new conductive polymer has high photovoltaic properties that can be stretched like rubber. The newly developed polymer is expected to play a role as a power source for next-generation wearable electronic devices.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Functional semiconductor made from graphene      (via sciencedaily.com)     Original source 

Researchers have created the first functional semiconductor made from graphene, a single sheet of carbon atoms held together by the strongest bonds known. The breakthrough throws open the door to a new way of doing electronics.

Engineering: Nanotechnology Environmental: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers boost signal amplification in perovskite nanosheets      (via sciencedaily.com)     Original source 

Perovskite nanosheets show distinctive characteristics with significant applications in science and technology. In a recent study, researchers achieved enhanced signal amplification in CsPbBr3 perovskite nanosheets with a unique waveguide pattern, which enhanced both gain and thermal stability. These advancements carry wide-ranging implications for laser, sensor, and solar cell applications, and can potentially influence areas like environmental monitoring, industrial processes, and healthcare.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Non-toxic quantum dots pave the way towards CMOS shortwave infrared image sensors for consumer electronics      (via sciencedaily.com)     Original source 

Researchers have fabricated a new high-performance shortwave infrared (SWIR) image sensor based on non-toxic colloidal quantum dots. They report on a new method for synthesizing functional high-quality non-toxic colloidal quantum dots integrable with complementary metal-oxide-semiconductor (CMOS) technology.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Using electricity, scientists find promising new method of boosting chemical reactions      (via sciencedaily.com)     Original source 

Chemists found a way to use electricity to boost a type of chemical reaction often used in synthesizing new candidates for pharmaceutical drugs. The research is an advance in the field of electrochemistry and shows a path forward to designing and controlling reactions -- and making them more sustainable.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Aptamers: lifesavers; ion shields: aptamer guardians      (via sciencedaily.com)     Original source 

Aptamers, nucleic acids capable of selectively binding to viruses, proteins, ions, small molecules, and various other targets, are garnering attention in drug development as potential antibody substitutes for their thermal and chemical stability as well as ability to inhibit specific enzymes or target proteins through three-dimensional binding. They also hold promise for swift diagnoses of colon cancer and other challenging diseases by targeting elusive biomarkers. Despite their utility, these aptamers are susceptible to easy degradation by multiple enzymes, presenting a significant challenge.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Breakthrough in organic semiconductor synthesis paves the way for advanced electronic devices      (via sciencedaily.com)     Original source 

A research team has achieved a significant breakthrough in the field of organic semiconductors. Their successful synthesis and characterization of a novel molecule called 'BNBN anthracene' has opened up new possibilities for the development of advanced electronic devices.