Showing 20 articles starting at article 801
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Physics: Quantum Computing
Published X-rays visualize how one of nature's strongest bonds breaks



The use of short flashes of X-ray light brings scientists one big step closer toward developing better catalysts to transform the greenhouse gas methane into a less harmful chemical. The result reveals for the first time how carbon-hydrogen bonds of alkanes break and how the catalyst works in this reaction.
Published Understanding the tantalizing benefits of tantalum for improved quantum processors



Researchers working to improve the performance of superconducting qubits, the foundation of quantum computers, have been experimenting using different base materials in an effort to increase the coherent lifetimes of qubits. The coherence time is a measure of how long a qubit retains quantum information, and thus a primary measure of performance. Recently, scientists discovered that using tantalum in superconducting qubits makes them perform better, but no one has been able to determine why -- until now.
Published You can make carbon dioxide filters with a 3D printer



Researchers demonstrated that it's possible to make carbon dioxide capture filters using 3D printing.
Published A protein mines, sorts rare earths better than humans, paving way for green tech



Rare earth elements, like neodymium and dysprosium, are a critical component to almost all modern technologies, from smartphones to hard drives, but they are notoriously hard to separate from the Earth's crust and from one another. Scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or 'dimerize,' when it is bound to certain rare earths, but prefer to remain a single unit, or 'monomer,' when bound to others.
Published First X-ray of a single atom



Scientists have taken the world's first X-ray SIGNAL (or SIGNATURE) of just one atom. This groundbreaking achievement could revolutionize the way scientists detect the materials.
Published Under pressure: Foundations of stellar physics and nuclear fusion investigated



Research using the world's most energetic laser has shed light on the properties of highly compressed matter -- essential to understanding the structure of giant planets and stars, and to develop controlled nuclear fusion, a process that could harvest carbon-free energy.
Published Crossing the ring: New method enables C-H activation across saturated carbocycles



Chemists add another powerful tool to their 'molecular editing' toolkit for crafting pharmaceuticals and other valuable compounds.
Published Symmetry breaking by ultrashort light pulses opens new quantum pathways for coherent phonons



Researchers have demonstrated a novel concept for exciting and probing coherent phonons in crystals of a transiently broken symmetry. The key of this concept lies in reducing the symmetry of a crystal by appropriate optical excitation, as has been shown with the prototypical crystalline semimetal bismuth (Bi).
Published Absolute vs. relative efficiency: How efficient are blue LEDs, actually?



The absolute internal quantum efficiency (IQE) of indium gallium nitride (InGaN) based blue light-emitting diodes (LEDs) at low temperatures is often assumed to be 100%. However, a new study has found that the assumption of always perfect IQE is wrong: the IQE of an LED can be as low as 27.5%.
Published Emergence of solvated dielectrons observed for the first time



Scientists generate low-energy electrons using ultraviolet light.
Published 'A blessing in disguise!' Physics turning bad into good



Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter's properties or change its form and be converted into thermal energy. Upon reaching a metallic material's surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call 'optical loss.' Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research.
Published Forging a dream material with semiconductor quantum dots



Researchers have succeeded in creating a 'superlattice' of semiconductor quantum dots that can behave like a metal, potentially imparting exciting new properties to this popular class of materials.
Published Making the structure of 'fire ice' with nanoparticles



Cage structures made with nanoparticles could be a route toward making organized nanostructures with mixed materials, and researchers have shown how to achieve this through computer simulations.
Published Twisting under the stroboscope -- Controlling crystal lattices of hybrid solar cell materials with terahertz light



To overcome global energy challenges and fight the looming environmental crisis, researchers around the world investigate new materials for converting sunlight into electricity. Some of the most promising candidates for high-efficiency low-cost solar cell applications are based on lead halide perovskite (LHP) semiconductors. Despite record-breaking solar cell prototypes, the microscopic origin of the surprisingly excellent optoelectronic performance of this material class is still not completely understood. Now, an international team of physicists and chemists has demonstrated laser-driven control of fundamental motions of the LHP atomic lattice.
Published Snapshots of photoinjection



Ultrafast laser physicists from the attoworld team have gained new insights into the dynamics of electrons in solids immediately after photoinjection.
Published Quantum scientists accurately measure power levels one trillion times lower than usual



Scientists have developed a nanodevice that can measure the absolute power of microwave radiation down to the femtowatt level at ultra-low temperatures -- a scale trillion times lower than routinely used in verifiable power measurements. The device has the potential to significantly advance microwave measurements in quantum technology.
Published Quantum matter breakthrough: Tuning density waves



Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.
Published Fluorine-based new drug synthesis at lightning speed



Researchers synthesize fluorine-based compound via rapid biphasic (gas and liquid) mixing.
Published Stretching metals at the atomic level allows researchers to create important materials for quantum, electronic, and spintronic applications



A University of Minnesota Twin Cities-led team has developed a first-of-its-kind breakthrough method that makes it easier to create high-quality metal oxide films that are important for various next generation applications such as quantum computing and microelectronics.
Published Physical chemists develop photochromic active colloids shedding light on the development of new smart active materials



In nature, the skin of cephalopods (animals with tentacles attached to the head) exhibits unparalleled camouflage ability. Their skin contains pigment groups that can sense changes in environmental light conditions and adjust their appearance through the action of pigment cells. Although intricate in nature, this colour-changing ability is fundamentally based on a mechanical mechanism in which pigment particles are folded or unfolded under the control of radial muscles. Inspired by this natural process, a research team forms dynamic photochromic nanoclusters by mixing cyan, magenta and yellow microbeads, achieving photochromism on a macro scale.