Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Physics: Quantum Computing
Published Perturbations simplify the study of 'super photons'



Thousands of particles of light can merge into a type of 'super photon' under suitable conditions. Physicists call such a state a photon Bose-Einstein condensate. Researchers have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access.
Published Newly developed material logs and stores stress information of infrastructure



A new material may be the key to quickly flag damaged infrastructure. This material offers a way to reduce the manpower required to regularly monitor structures that undergo daily use such as bridges. Compared to previous methods, this environmentally friendly material boasts the ability to operate without a power supply, and store information about previous incidents of mechanical stress. The application of this mechanoluminescent material is expected to make it easier and less costly to assess the safety of structures we may use in our everyday lives.
Published Novel diamond quantum magnetometer for ambient condition magnetoencephalography



A highly sensitive diamond quantum magnetometer utilizing nitrogen-vacancy centers can achieve millimeter-scale resolution magnetoencephalography (MEG). The novel magnetometer, based on continuous-wave optically detected magnetic resonance, marks a significant step towards realizing ambient condition MEG and other practical applications.
Published Pushing an information engine to its limits



The molecules that make up the matter around us are in constant motion. What if we could harness that energy and put it to use? Over 150 years ago Maxwell theorized that if molecules' motion could be measured accurately, this information could be used to power an engine. Until recently this was a thought experiment, but technological breakthroughs have made it possible to build working information engines in the lab. Researchers have now teamed up to build an information engine and test its limits.
Published Groundbreaking progress in quantum physics: How quantum field theories decay and fission



An international research team has sparked interest in the scientific community with results in quantum physics. In their current study, the researchers reinterpret the Higgs mechanism, which gives elementary particles mass and triggers phase transitions, using the concept of 'magnetic quivers.'
Published The coldest lab in New York has new quantum offering



Physicists describe the successful creation of a molecular Bose-Einstein condensate (BEC). Made up of dipolar sodium-cesium molecules that were cooled with the help of microwave shielding to just 5 nanoKelvin and lasted for up to two seconds, the new molecular BEC will help scientists explore a number of different quantum phenomena, including new types of superfluidity, and enable the creation of quantum simulators to ecreate the enigmatic properties of complex materials, like solid crystals.
Published Overcoming barriers to heat pump adoption in cold climates and avoiding the 'energy poverty trap'



Converting home heating systems from natural gas furnaces to electric heat pumps is seen as a way to address climate change by reducing greenhouse gas emissions.
Published The thinnest lens on Earth, enabled by excitons



Lenses are used to bend and focus light. Normal lenses rely on their curved shape to achieve this effect, but physicists have made a flat lens of only three atoms thick which relies on quantum effects. This type of lens could be used in future augmented reality glasses.
Published Theoretical quantum speedup with the quantum approximate optimization algorithm



Researchers demonstrated a quantum algorithmic speedup with the quantum approximate optimization algorithm, laying the groundwork for advancements in telecommunications, financial modeling, materials science and more.
Published Researchers create materials with unique combo of stiffness, thermal insulation



Researchers have demonstrated the ability to engineer materials that are both stiff and capable of insulating against heat. This combination of properties is extremely unusual and holds promise for a range of applications, such as the development of new thermal insulation coatings for electronic devices.
Published Study is step towards energy-efficient quantum computing in magnets



Researchers have managed to generate propagating spin waves at the nanoscale and discovered a novel pathway to modulate and amplify them. Their discovery could pave the way for the development of dissipation free quantum information technologies. As the spin waves do not involve electric currents these chips will be free from associated losses of energy. The rapidly growing popularity of artificial intelligence comes with an increasing desire for fast and energy efficient computing devices and calls for novel ways to store and process information. The electric currents in conventional devices suffer from losses of energy and subsequent heating of the environment.
Published Performance of eco-friendly cooling applications enhanced



Researchers have developed a sustainable and controllable strategy to manipulate interfacial heat transfer, paving the way for improving the performance of eco-friendly cooling in various applications such as electronics, buildings and solar panels.
Published More than spins: Exploring uncharted territory in quantum devices



Many of today's quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the '0' and the '1'. However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. Researchers now demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.
Published Breakthrough discovery uses engineered surfaces to shed heat



Splash a few drops of water on a hot pan and if the pan is hot enough, the water will sizzle and the droplets of water seem to roll and float, hovering above the surface. The temperature at which this phenomenon, called the Leidenfrost effect, occurs is predictable, usually happening above 230 degrees Celsius. A team has now discovered a method to create the aquatic levitation at a much lower temperature.
Published How a tiny device could lead to big physics discoveries and better lasers



Researchers have fabricated a device no wider than a human hair that will help physicists investigate the fundamental nature of matter and light. Their findings could also support the development of more efficient lasers, which are used in fields ranging from medicine to manufacturing.
Published Renewable grid: Recovering electricity from heat storage hits 44% efficiency



Closing in on the theoretical maximum efficiency, devices for turning heat into electricity are edging closer to being practical for use on the grid, according to new research.
Published Strings that can vibrate forever (kind of)



Researchers have engineered string-like resonators capable of vibrating longer at ambient temperature than any previously known solid-state object -- approaching what is currently only achievable near absolute zero temperatures. Their study pushes the edge of nanotechnology and machine learning to make some of the world's most sensitive mechanical sensors.
Published New polystyrene recycling process could be world's first to be both economical and energy-efficient



Engineers have modeled a new way to recycle polystyrene that could become the first viable way of making the material reusable.
Published New crystal production method could enhance quantum computers and electronics



Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.
Published Powering wearable devices with high-performing carbon nanotube yarns



Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.