Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues
Published

Manufacturing perovskite solar panels with a long-term vision      (via sciencedaily.com)     Original source 

Researchers working at the forefront of an emerging photovoltaic (PV) technology are thinking ahead about how to scale, deploy, and design future solar panels to be easily recyclable. Solar panels made of perovskites may eventually play an important role amid global decarbonization efforts to reduce greenhouse gas emissions. As the technology emerges from the testing stages, it is a perfect time to think critically about how best to design the solar panels to minimize their impact on the environment decades from now.

Chemistry: General Chemistry: Thermodynamics Energy: Alternative Fuels Physics: General
Published

3D-printed microstructure forest facilitates solar steam generator desalination      (via sciencedaily.com)     Original source 

Faced with the world's impending freshwater scarcity, researchers turned to solar steam generators, which are emerging as a promising device for seawater desalination. The team sought design inspiration from trees and harnessed the potential of 3D printing. They present technology for producing efficient SSGs for desalination and introduces a novel method for printing functional nanocomposites for multi-jet fusion. Their SSGs were inspired by plant transpiration and are composed of miniature tree-shaped microstructures, forming an efficient, heat-distributing forest.

Chemistry: Organic Chemistry Energy: Alternative Fuels Environmental: Water
Published

Maximizing hydrogen peroxide formation during water electrolysis      (via sciencedaily.com)     Original source 

When water is split electrolytically, the result is typically hydrogen -- and 'useless' oxygen. Instead of oxygen, you can also produce hydrogen peroxide, which is required for many branches of industry. This, however, requires certain reaction conditions.

Energy: Alternative Fuels
Published

Cracking the code of hydrogen embrittlement      (via sciencedaily.com)     Original source 

When deciding what material to use for infrastructure projects, metals are often selected for their durability. However, if placed in a hydrogen-rich environment, like water, metals can become brittle and fail. Since the mid-19th century, this phenomenon, known as hydrogen embrittlement, has puzzled researchers with its unpredictable nature. Now, a study brings us a step closer to predicting it with confidence.

Chemistry: General Energy: Alternative Fuels
Published

'Secret' hidden structure paves new way of making more efficient and stable perovskite solar cells      (via sciencedaily.com)     Original source 

Researchers has revealed the existence of surface concavities on individual crystal grains -- which are the fundamental blocks -- of perovskite thin films, and have unraveled their significant effects on the film properties and reliability. Based on this discovery, the team pioneered a new way of making perovskite solar cells more efficient and stable via a chemo-elimination of these grain surface concavities.

Chemistry: Biochemistry Energy: Alternative Fuels Environmental: Ecosystems Environmental: General Environmental: Water
Published

Solar farms with stormwater controls mitigate runoff, erosion, study finds      (via sciencedaily.com)     Original source 

As the number of major utility-scale ground solar panel installations grows, concerns about their impacts on natural hydrologic processes also have grown. However, a new study by Penn State researchers suggests that excess runoff or increased erosion can be easily mitigated -- if these 'solar farms' are properly built.

Energy: Alternative Fuels Environmental: General Environmental: Water
Published

Aussie innovation spearheads cheaper seafloor test for offshore wind farms      (via sciencedaily.com)     Original source 

Australian engineers have unveiled a clever new device -- based on a modified speargun -- as a cheap and efficient way to test seabed soil when designing offshore wind farms.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists develop new theory describing the energy landscape formed when quantum particles gather together      (via sciencedaily.com)     Original source 

An international team of physicists has proven new theorems in quantum mechanics that describe the 'energy landscapes' of collections of quantum particles. Their work addresses decades-old questions, opening up new routes to make computer simulation of materials much more accurate. This, in turn, may help scientists design a suite of materials that could revolutionize green technologies.

Computer Science: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Paving the way to extremely fast, compact computer memory      (via sciencedaily.com)     Original source 

Researchers have demonstrated that the layered multiferroic material nickel iodide (NiI2) may be the best candidate yet for devices such as magnetic computer memory that are extremely fast and compact. Specifically, they found that NiI2 has greater magnetoelectric coupling than any known material of its kind.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Producing hydrogen and fertilizer at the same time      (via sciencedaily.com)     Original source 

This new concept could allow the needs of previously separate industries to be combined: the production of hydrogen and the production of fertilizer.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Fossil Fuels Environmental: General Geoscience: Environmental Issues
Published

Hydrogen flight looks ready for take-off with new advances      (via sciencedaily.com)     Original source 

The possibility of hydrogen-powered flight means greater opportunities for fossil-free travel, and the technological advances to make this happen are moving fast. New studies show that almost all air travel within a 750-mile radius (1200 km) could be made with hydrogen-powered aircraft by 2045, and with a novel heat exchanger currently in development, this range could be even further.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A breakthrough on the edge: One step closer to topological quantum computing      (via sciencedaily.com)     Original source 

Researchers have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing.

Energy: Alternative Fuels Environmental: General
Published

Researchers examine economic effects on technological advancements of blue hydrogen production      (via sciencedaily.com)     Original source 

Experience from the deployment of blue hydrogen projects will be helpful in lowering future costs of hydrogen production and will remain cost competitive. Additionally, paired with extended tax incentives for carbon sequestration, costs could be significantly reduced further.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Moving from the visible to the infrared: Developing high quality nanocrystals      (via sciencedaily.com)     Original source 

Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels
Published

Hexagonal perovskite oxides: Electrolytes for next-generation protonic ceramic fuel cells      (via sciencedaily.com)     Original source 

Researchers have identified hexagonal perovskite-related oxides as materials with exceptionally high proton conductivity and thermal stability. Their unique crystal structure and large number of oxygen vacancies enable full hydration and high proton diffusion, making these materials ideal candidates as electrolytes for next-generation protonic ceramic fuel cells that can operate at intermediate temperatures without degradation.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A 2D device for quantum cooling      (via sciencedaily.com)     Original source 

Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.

Chemistry: Thermodynamics Energy: Alternative Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Cool roofs are best at beating cities' heat      (via sciencedaily.com)     Original source 

Painting roofs white or covering them with a reflective coating would be more effective at cooling cities like London than vegetation-covered 'green roofs,' street-level vegetation or solar panels, finds a new study led by UCL researchers.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Computer Science: General Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A genetic algorithm for phononic crystals      (via sciencedaily.com)     Original source 

Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.

Biology: Biochemistry Biology: General Biology: Marine Chemistry: Biochemistry Ecology: Sea Life Energy: Alternative Fuels Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Giant clams may hold the answers to making solar energy more efficient      (via sciencedaily.com)     Original source 

Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.